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Abstract: In this paper, we present SMoG (Small MoleculeGrowth), a novel, straightforward method forde noVo
lead design and the evidence for its effectiveness. It is based on a simple model for ligand-protein interactions and
a scoring that is directly related to the free energy through a knowledge-based potential. A large number of structures
are examined by an efficient metropolis Monte Carlo molecular growth algorithm that generates molecules through
the adjoining of functional groups directly in the binding region. Thus SMoG is a method that is able to rank a
largenumber of potential compounds according to binding free energy in ashorttime. In this sense, SMoG represents
a step toward an ideal computational tool for ligand design.

Introduction

The General Problem. Structure-based drug design is
beginning to play an important role in the discovery of new
therapeutic molecules. Particularly when a lead compound is
already known, and the three dimensional structure of the
protein-ligand complex has been determined, computer modeling
provides an opportunity for assessment of the feasibility of
related compounds as ligands. When no lead compound is
known, however, computers can help the medicinal chemist by
sampling a large variation of structures quickly and thoroughly,
generating potential lead candidates automatically. Theideal
computational tool for this de novo lead design will be able to
testmanystructures in ashortperiod of time and arrange them
into a ranked list based on anaccurate prediction of binding
free energies, since the latter reflect actual binding propensities.
Of course, the termsmanyandshortneed to be clarified.
The number of structures that need to be sampled can be

determined from an analysis of the combinatorics of molecular
architecture. Let us consider, for the sake of argument that we
are in pursuit of chemicals on the order of 300 atomic mass
units or roughly 20-25 second period elements. If we consider
small organic molecules as simple combinations of functional
groups, candidate molecules can be thought of as the choice
and arrangement of approximately five functional groups. Even
a library of functional groups as rudimentary as the one
presented in this paper (see Table 1) contains about 50
fragments, resulting in the overwhelming number of structures
to be considered being 505 or over 108 candidates. Obviously,
this figure grows very quickly as the diversity of possible
structures is increased by enlarging the library of molecular
fragments. Moreover, the number of arrangements and con-
formations of five fragments can be estimated in the tens of
thousands. These arguments lead us to define the termmany
as on the order of billion or trillion. It is clear that exhaustive
searches over all possible compounds are beyond the limit of
practical computation, so in order to enhance practicability,
searches must be tuned to specific traits or the library of
chemical fragments needs to be trimmed.
Programs that perform analysis instantaneously can be used

interactively and thereby present the chemist with novel insight

in real time. This is not necessary, however, as most researchers
are comfortable with computer programs that require a day’s
computation. However, computations that extend beyond a day
become less desirable tools.
As we will point out in the discussion section, the several

computational tools that have been presented in the literature
to date have made excellent use of algorithmic programming
in order to overcome, in part, the combinatorial problem
discussed above. However it is with respect to theprediction
of free energies of bindingthat today’s methods are most weak.
The most widely accepted approach for computational estima-
tion of free energy of binding involves sophisticated simulations
using an empirical potential and stepwise estimation of the
changes in enthalpy and entropy at each stage in a thermody-
namic cycle. These calculations demand on the order of days
of computation for each ligand candidate. As a result, the
present methods rely on alternative scoring techniques to provide
a short list of candidates for complete thermodynamic deter-
mination or, involving even greater expense, chemical synthesis
and experimental determination of binding properties. Each of
these scoring methods in some way approximates the binding
free energy, whose explicit form is unknown, but which must
contain the following terms (g being free energy,ebeing energy,
ands being entropy):

where the terms marked complex formation refer to the associ-
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Table 1. Fragments Used in the Small Molecule Growth
Algorithm

amide cyclohexene methyl pyramidine
amine 1,2-dithian n-butyla pyridine
carbonyl ethane napthalene pyrrole
carboxylic acid ethene nitrile sulfate
chloride fluoride nitro sulfide
cyanide furan phenyl tert-butyl
cyclooctanea glucosea phosphate tetrahydrofuranyl
cyclopentane hydroxyl propane tetrahydrothienyl
cycloheptanea indole propene thiophene
cyclohexanea iodide purine trifluoromethyl

a Indicates that multiple conformations are represented.

∆gbinding) ∆ebinding- T∆sbinding (1)

) ∆ecomplex formation- T∆scomplex formation+
∆esolvation/desolvation- T∆ssolvation/desolvation

11733J. Am. Chem. Soc.1996,118,11733-11744

S0002-7863(96)00751-2 CCC: $12.00 © 1996 American Chemical Society



ation event between ligand and receptorin Vacuo, and those
marked solvation/desolvation refer to the effects explicitly due
to solvation. Hence∆ebinding refers to the interaction energy
minus any intramolecular strain induced upon complex forma-
tion, and∆sbinding refers to the change in conformational freedom
induced by formation of the complex. Energies of solvation
are those energetic factors arising from the transfer of hydro-
philic and lipophilic groups from aqueous solvent to the more
lipophilic region of the protein binding site, and entropy of
solvation refers to changes in the order of the solvent at the
interface between ligand and solvent and protein and solvent
upon complex formation. In many of the quantitative ap-
proximations to the full expression for binding free energy that
have been implemented in the past for the purpose of ligand
design, the scoring is based solely on the interaction energy
between the ligand and protein in the complex as the single
most important contributor to the free energy. In other schemes
based more on spatial complementarity than chemical comple-
mentarity, theansatzthat solvation contributions are proportional
to exposed surface area motivate the scoring strategies. In both
of these approximations, the scoring system is rather incomplete,
unfortunately resulting in erroneous ranking of the candidate
ligands. Hence, great progress in computational ligand design
can be achieved with the introduction of an improved evaluation
of binding free energy which is as efficient as the approxima-
tions currently in use. A recent paper1 has presented a
significant step in this direction through the application of a
knowledge-based potential to an interaction model based on
shared surface area. By adjusting two free parameters in their
model, predicted free energies can be fit to the experimental
binding free energies of a set of known, related ligands to
reasonable accuracy. By the careful choice of a contact-based
interaction model, our interaction potential reflects the trends
in binding free energy without free parameters, thus eliminating
the need for a series of known related ligands in the hunt for a
lead compound.
Coarse-Graining and the Knowledge-Based Potential.In

order to overcome this limitation and therefore provide a more
directly predictive de novo design tool, we implement here a
coarse-grained model with a corresponding knowledge-based
potential. Whereas the details of our implementation will be
described in the methods section, it is relevant to introduce the
nature of our approximations at this stage in order to shed light
on how this novel method provides an approximate description
of the binding free energy, incorporating effects from all of the
terms of eq 1. The model we employ is intermediate between
crude functional group or amino acid repesentations of chemical
structure and traditional molecular dynamics force fields. Our
model treats both ligand and protein in an all-atom representation
but assumes a simplified form of their interaction.
According to arguments made by Finkelstein and co-workers2

one can apply the principles of canonical statistical mechanics
to subsets of proteins in that tiny subsets of a folded protein
are in thermal equilibrium with each other. This implies that
the information present in crystal structures of proteins and
crystal structures of protein-ligand complexes (insofar as the
lifetime of the complexed form is significantly longer than the
time scales of the thermal fluctuations of the system) can be
disassembled into constituent pieces, and the contribution of
each piece can be assigned on the basis of probabilities. This
is the heart of the knowledge-based approach1,3 ( i.e.: learning
the interaction energies by training on a database). In this

application the database contains crystal structures of protein-
ligand complexes as described below.
More formally, the postulate of equala priori probabilities

states that any two states at the same energy have equal
probability of occupation, hence

where here we denote the subscriptsi and j to mean different
atoms on the protein and ligand, respectively, so thateij
and peij refer to the energy and probability of an interaction
between protein atomi and ligand atomj. The situation in the
formation of protein ligand complexes, however, is that not all
configurations of the same energy are equally likely, because
of two entropic effects that arise from the strong presence of a
boundary in the space sampled by the ligand. These are solvent
ordering (at the protein-solvent interface, ligand-solvent interface
and complex-solvent interface), and the restrictions on atomic
interactions are due to steric hindrance and the nearly fixed
chemical structures of the ligand and protein (i.e.: fixed
molecular architecture and small amount of conformational
freedom). These entropic effects are not correlated to the
energetic events, and so we can express the total probability as
a product ofpe above and a sampling probabilityps, which we
can relate to a notion of entropy as

giving a relation between probability and a notion of free energy
that is dependent on the model chosen to describe the atomic
interactions:

which can be inverted to give an expression forg* ij from the
frequency of observed interactions.

By an appropriate choice of a reference state, the partition
function can be eliminated

which gives a method to relate the statistical information about
interatomic interactions in crystal structures of protein-ligand
complexes to a two-body parameter that is a notion of free
energy. By an appropriate choice of model for atomic interac-
tions and definition of reference state, it is possible to construct
the parametersgij so that their sum is an approximation of the
complete form of the free energy in eq 1.
Without entering into the details here, it should be made clear

that the choice of the interaction model is intrinsically a choice
of length scales. We must determine the reasonable distances

(1) Wallqvist, A.; Jernigan, R. L.; Covell, D. G.Protein Science1995,
4, 1881-1903.

(2) Finkelstein, A. V.; Gutin, A. M.; Badretinov, A. Y.FEBS1993,325,
23-28.

(3) Miyazawa, S.; Jerniga, R. L.Macromolecules1985,18, 534-552.

peij )
exp[- eij

kT ]
Z

(2)

psij )
exp[-

sij
k]

Z
(3)

pij ) peijp
s
ij )

exp[-
eij-Tsij
kT ]

Z
)
exp[-

g*ij
kT]

Z
(4)

g*ij ) -kT log(pij) - log(Z) (5)

gj ) -kT log(pj) - log(Z) (6)

gij ) g*ij - gj (7)

gij ) -kT log[pijpj ] (8)
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over which atoms project their chemical properties in order to
accumulate the relevant statistics and apply the right model.
Hence, knowledge-based potentials lend themselves naturally
to coarse-graining techniques, where potential energy surfaces
are smoothed by averaging all phenomena occurring below a
cutoff length scale into properties describing the system at the
specified length.
Coarse-Graining and the Search Algorithm. In principle,

the combinatorial search space for molecular growth or docking
algorithms is a rough energy landscape. Searching such a
landscape requires careful algorithms and long search times.
Fortunately, however, the identification of candidate lead
molecules is not a search forthe lowestfree energy complex
but rathera low free energy complex (or several). Still, the
search is a difficult process because of the multiple minimum
problem. If the search space can be made more smooth by
coarse graining, however, the searching method need not be as
sophisticated. For this reason, SMoG employs a metropolis
Monte Carlo growth algorithm. Such a search procedure quickly
samples the configuration space and the molecular space under
the bias of the interaction potential (knowledge-based energy
in this case). In a coarse-grained ligand design search space, a
simple, hasty, search algorithm such as the one presented here
can do very well in finding low energy configurations.
Measures of Success of Lead Design Methods.It is difficult

to define the success of a de novo design effort in the absence
of an example of a ligand that was synthesized and tested solely
on the grounds of a computational tool. Only then do we have
proof of concept. Feasibilityof concept, can be established by
several means, however, and most methods in the literature to
date have been able to present several qualitatively interesting
suggestions for novel ligands or the improvement of known
ligands. It is unclear, however, from their conclusions whether
these new candidates actually have lower binding free energies
(either experimental or theoretically calculated). Therefore, in
this work, we have chosen to demonstrate the ability of SMoG
to predict the relative binding free energies of a series of known
ligands. It is this success that gives us confidence that SMoG’s
combination of coarse-graining, knowledge-based potential and
Monte Carlo growth algorithm provides an exciting new
contribution to the search for novel pharmaceutical leads. As
an example of the rich molecules that SMoG is able to produce,
we do include a discussion of one design effort: a binding
pocket on the CD4 protein. Greater development of the general
SMoG design methodology will be left to the second paper in
this series, which is forthcoming. Furthermore, we are also
presently pursuing genuineproof of conceptin collaboration
with medicinal chemists.

Methods

Model and Interaction Potential. The correct model and
reference state for the application of a knowledge-based potential
to the protein-ligand binding event can be deduced with respect
to the physical origins of the various terms in eq 1.
Changes in solvation entropy upon complex formation arise

due to the loss or gain of solvent order. This solvent order is
manifest as a correlation in the potential surface of the solvent
exposed atoms in the ligand, protein, or complex. These
correlations extend on the order of twice the size of a water
molecule beyond the boundary of the ligand, protein, or
complex. As the interactions formed between ligand and protein
upon complexation have resulted in desolvation, there has been
a change in the configurational entropy. In other words, in order
to form a particular intermolecular contact, each of the atoms
in contact must have been desolvated. Therefore, where much
order has been destroyed, there is an entropic increase due to

desolvation for formation of that particular contact. By choosing
the interaction radius between protein and ligand to be the
correlation length of solvent ordering, the probabilities of the
specific contacts observed will include the effect of an average
over the contribution of solvation entropy to the free energy.
For this reason, a simple radius of 5 Å has been chosen for our
interaction model: a ligand atom is in contact with a protein
atom if they lie within 5 Å of each other.
The formation of each contact also involves energetic costs

for desolvation. This effect can be taken into account by the
reference state. Choose

such that in the reference state, the specificity of each contact
is lost, and the remaining energetic contribution in a model with
a 5 Å interaction radius simply arises due to the fact that
desolvation has taken place. This choice of reference state has
the simple interpretation that formation of those contacts that
are observed in the database more frequently than average is
favored, whereas formation of those contacts that are observed
rarely is penalized.
This choice of reference state also has effectively unrestricted

spatial sampling of the ligand with respect to the protein and
vice versa. In essence, it has no notion of chemical structure.
And, since the specificity of each contact is lost, the only
entropic contribution is precisely the entropy due to configu-
rational freedom. Hence, subtractinggj from gij accounts for
the entropic effect of restricted sampling as well as the energetic
effect of desolvation.
This model is used to score candidate structures by an

evaluation of the total binding free energy

where∆ij is zero unlessi andj are within 5 Å of each other, in
which case it is one. Thus, with this choice of model and
reference state,G is an approximation to the complete change
in free energy upon complex formation. Coarse graining has
included entropic effects of solvation, and the reference state
has provided the effects of solvation energy and configurational
entropy.
One final aspect of the model is that the number of atom

types is expanded to include some notion of the chemical
personality of the various atoms. In other words, carbon atoms
are broken into the categories of fatty carbons and polar carbons,
and oxygen atoms are either charged, hydrogen bond donors,
or hydrogen bond acceptors. Similarly nitrogen atoms and some
other atoms and ions are included, such as sulfur, phosphorus,
fluorine, calcium, and zinc. The model, together with the
knowledge-based potential, is referred to as the design energy
in this work.
Databases. Testing and application of SMoG has been

subdivided into two parts: binding to sites on a protein surface
and binding to sites in pockets. This subdivision is based on
the observation that significantly different probabilities of
interaction arise in each case, largely due to the different role
of solvent in each situation which is reflected in the different
contributions from solvation/desolvation terms. For the protein
surface work, 17 complex structures were chosen: 1cmc 1dhi
1ela 1glq 1gmp 1hew 1nco 1nsc 1nsd 1pip 1sha 1sre 1tlm 2msb
2ohx 2sar 4dfr. These are all unique high resolution (e 2.0 Å
RMSD) structures of non-peptide ligands bound to surface
receptors. For the non-surface work, the training database
included the following complexes (alsoe 2.0 Å RMSD): 1art

pj )
1

N
∑
ij

pij whereN) ∑
ij

1 (9)

G) ∑
ij

gij∆ij (10)
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1bcd 1bcx 1bic 1bit 1byb 1cah 1cam 1can 1cao 1caz 1chn 1cil
1cmp 1coy 1cra 1crq 1csc 1csh 1csi 1enc 1erb 1fel 1fem 1fen
1fkd 1fkf 1fkh 1gca 1gcd 1hcb 1hsl 1hvi 1hvk 1hvl 1hyt 1icm
1icn 1inc 1isc 1lcc 1lic 1lid 1lie 1lif 1lra 1lst 1mdq 1mfa 1mng
1olb 1pal 1pbe 1pbp 1ppf 1ppp 1ray 1raz 1snm 1sta 1sty 1swm
1syd 1thl 1tng 1tnh 1tni 1tnj 1tnk 1tnl 1tpp 1tro 2aae 2acq 2acr
2acs 2acu 2che 2csc 2ctc 2cut 2fke 2mbp 2pal 2rnt 2tbs 2xis
3cla 3cts 3dfr 3gch 3pat 3rnt 3sga 4csc 4gch 4pal 4sga 5cts
5sga 5tim 6rnt 7rnt 821p 8est 8tln 8xia 9est.
Monte Carlo Molecular Growth Algorithm. Directly in

the binding region of the protein, simple organic molecules are
generated by joining fragments with single bonds. Each step
of the molecular growth proceeds as follows: two hydrogen
atoms are selectedsone from the fragment to be added and one
from the structure as generated so far. The new fragment is
placed such that the hydrogen atoms are displaced, and the atoms
formerly bonded to those hydrogen atoms now form a single
bond with a standard bond length. This procedure ensures that
the new bond angles and bond lengths are reasonable ap-
proximations. Finally, the new functional group is oriented by
torsional rotation about the new bond. Table 1 lists the
fragments used in molecular growth.
In this manner, beginning with simpleH2 in the binding site,

a molecule of any desired size can be generated, by continuing
to add fragments. Notice that the growth is inherently branched
because at each growth step any hydrogen atom on the present
structure is a potential site of growth.
Each fragment that is placed is oriented by torsional rotation

about the new bond in fixed increments (taken to be 60 degrees),
and all those orientations that are not sterically hindered (i.e.:
leading to atom pairs within 70% of the sum of their van der
Waals’ radii) are subject to energetic evaluation. That rotamer
with the lowest energy is considered as a candidate for
acceptance into the new molecule. This acceptance is deter-
mined by a metropolis Monte Carlo criterion which compares
the new energy per atom with that before this growth step. Any
decrease is accepted, and any increase is accepted with
probabilityexp[-∆g/T] whereg ) G/N is the free energy per
atom, andT is an algorithmic temperature.
The preliminary selection of lowest allowed rotamer has two

positive effects. First, it biases the molecule more quickly to
low energy, since random selection of rotamers would lead to
significantly more metropolis failures. Second, it is an indirect
selection toward the tightest possible steric complementarity.
The Metropolis decision of acceptance or rejection of the new

fragment is in place to allow the energy per atom to increase
occasionally, as would need to be the case if the small molecule
had grown into a tight steric region and had no other recourse
but to grow into the solvent or some other unoccupied region,
where it would interact only marginally with the protein.
Analysis of Growth Algorithm. In any implementation of

an algorithm such as presented here, care needs to be taken in
selecting the global parameters in the algorithm. These include
the algorithm’s temperature, the nearest approach allowed
between atoms when assessing steric hindrance, and the angular
increment in choosing the fragment rotamers. The nearest
approach distance was taken to be 70% of the sum of the van
der Waals radii of the atoms under consideration, since this gave
good correlation with the nearest approach distances observed
in the database. Sixty degree increments were chosen in part
because finer increments gave rise to significantly more lengthy
computation times, and because finer resolution was not
consistent with the coarse grained potential. Selection of the
optimal running temperature was made by observing the
distribution of energies and computation time at different
temperature. Figures 1 and 2 show the mean energy and

computation time for generation of a thousand ligands to
streptavidin, one of the surface proteins. Notice that there seem
to be two regimes of operation of the algorithm, high bias and
low bias. Because the optimal algorithmic temperature is the
one that generates the largest number of low energy structures

Figure 1. The average energy for ligands generated for 1sre at various
algorithmic temperatures (log plot chosen for clarity of display only).
As with all Monte Carlo algorithms, the algorithmic temperate defines
how the algorithm reponds to steps which increase the parameter being
minimized. Higher temperature implies higher probability of acceptance.
Here the affect of such a parameter on the final energies per heavy
atom of the molecules generated by SMoG is shown. There is a sharp
affect in the narrow range of temperatures nearT ) 1.

Figure 2. The average computation time for ligands designed for 1sre
at various algorithmic temperatures (log plot chosen for clarity of
display only). At the same temperature for which the average energy
of the molecules rises, the algorithm becomes much more efficient.
This results from the fact that a higher acceptance rate of molecular
fragments implies quicker but less selective growth. However, the trade
off in efficiency needs to be viewed with a pragmatic attitude in this
situation, since the key parameter to optimize is the probability to
generate extremely low energy molecules in a given time. Certainly,
higher operating temperatures are preferred since the affect on
computation time is more drastic than the affect on average energy
per heavy atom.
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per unit time, the low bias mode was selected for the balance
of the work in this paper, namelyT ) 10.0.
The two modes can be understood from the point of view of

the solvation energy and configurational entropy. There are
some configurations whose free energy is favored because of
the desolvation of lipophilic regions of the ligand and protein.
However, the restrictions of the sampling of the space may make
such configurations relatively improbable. Given a sufficiently
low algorithmic temperature, the persistent algorithm will attain
these configurations at the expense of time.
Under the operating conditions of 60 degree torsional

increments, 70% van der Waals contact radius, and an algo-
rithmic temperature of 10.0, each molecule of about 20 heavy
atoms can be generated in a few seconds on a 100 MHZ pentium
computer running Linux.
Synopsis of Program. SMoG can be operated in several

modes, which can be summarized as automatic, directed, or
assisted. Automatic generation requires only the input of the
protein structure and a coordinate used to specify the vicinity
of the binding site, from which it proceeds to generate ligands
with at least one atom within 5 Å of thespecified coordinate.
Directed mode is an interactive program that allows the user to
specify which molecular fragments are selected and where they
are attached. This mode allows the user to specify a specific
molecule. Assisted growth begins with a user specified restart
fragment but proceeds from that fragment automatically. This
mode allows the user to incorporate a specific fragment into
each molecule. The program also contains a conformational
search facility, which performs a search in the space of
interfragment torsion angles for the conformation with the lowest
interaction energy.

Results

For the SMoG method to be proven effective, several
requirements must be met. First the design potential must
recognize native ligands (i.e.: ligands known to bind) as
extremely low in free energy compared to an ensemble of
generated molecules. In so doing, the scoring method reflects
the fact that native ligands have a large negative binding free
energy. Second, the algorithm must be able to generate some
molecules with free energies comparable to native ligands in a
reasonable amount of computation time. This demonstrates that
SMoG can generate complexes with free energies comparable
to a known ligand. Third, since the binding energy is a large
component of the free energy, there must be some rough
correlation between the design energy and an estimation of
binding energy using an empirical force field such as CHARMM.
Fourth, there needs to be evidence that the guiding knowledge-
based potential can be relied upon to reproduce experimental
binding free energies, in order to establish the knowledge-based
potential. Finally, the molecules generated by SMoG must not
only score well quantitatively but must be qualitatively appealing
as well. The evidence that SMoG meets each of these
requirements is given in the following sections.
Attaining and Discriminating True Ligands. Figures 3 and

4 demonstrate, for each of the complexes in the surface database
save one, that the knowledge-based potential respects the native
ligand (whose energy is marked as a dark stripe) as having
extremely low energy. Moreover, molecules with a comparable
energy are rare but attainable in reasonable computation time
since approximately 5% of generated molecules are comparable
to the native ligand in each example save one.
The exception is an example where the native ligand contains

only four atoms. Most likely, the algorithm would only take
one step, with little opportunity for biasing, or little need to
compromise energy for steric freedom.

Quasi-Correlation with Empirical Binding Energies. In
order to examine rough correlation between the design energy
approximation to free energy and an empirical estimation of
binding energy, the protein streptavidin (1sre) was chosen
because its native ligand scored exceptionally strongly in design
energy and the native ligand and protein were both rather small,
making subsequent calculations with CHARMMmore efficient.
Fifty of the lowest energy molecules generated with SMoG were
minimized to convergence in the binding site of streptavidin.
Figure 5 shows the correlation of the CHARMM interaction
energy with the design potential. We are not seeking to
demonstrate a one-to-one correspondence with CHARMM but
rather to show that those molecules with low design energy also
have low empirical energy. Also, there is a rough correlation
between the two scoring methods, which is to be expected as
the design energy, as an estimate of binding free energy contains
a large contribution from binding energy. It should be noted
here that the empirical energy is a vaccuum enthalpy estimate
and, therefore, provides unreliable estimates of the solvent
effects such as hydrophobic interaction. Thus the scatter in this
figure results from the entropic and solvent energy factors in
the free energy. This result also demonstrates that the SMoG
algorithm and statistical potential are able to generate ligands
that are predicted to have binding energies as strong as the native
ligand.
Because the SMoG estimation of free energy is an estimate,

rather than an accurate determination, a recommended protocol
for the screening of lead candidates is to perform empirical
estimations of the binding energy and select as candidates for
further testing (be it experimental or computational) those that
score best in both binding energy and design free energy. These
are the candidates below the shaded line in Figure 5. Indeed,
examination of the structures of these molecules in complex
with streptavidin showed the presence of good steric comple-
mentarity, several hydrogen bonds, and association of lipophilic
moieties: the qualitative features desirable in ligand design.
Correlation with Experimental Binding Free Energies. In

order to test the correlation between experimental binding free
energies and the SMoG design procedure, SMoG was applied
to the three protein-ligand complex systems for which structural
and binding information has been published and is readily
available. These examples include purine nucloside phospho-
rylase (PNP), Src SH3 domain specificity pocket (SH3 domain),
and human immunodeficiency virus-1 protease (HIV). Each
case will be presented in turn.
Purine Nucleoside Phosphorylase.Guanine based ligands

that have been designed, synthesized, and assayed for purine
nucleoside phosphorylase (PNP).4-9 In these publications, the
authors present their rationale for synthesizing the ligands that
they tested, which rests on computer models of the ligands, each
of which adopts a binding mode defined in part by the
coordinates of guanine in the crystal structure 1ulb and in part
by a combination of conformational search and energy mini-
mization with an empirical force field.

(4) Tuttle, J. V.; Kernitzky, T. A.J. Biol. Chem.1984,259,4065-4069.
(5) Ealick, S. E.; Babu, Y. S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.;

Montgomery, J. A.; Secrist, J. A.PNAS1991,88, 11540-11544.
(6) Montgomery, J. A.; Niwas, S.; Rose, J. D.; Secrist, J. A.; Babu, Y.

S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.; Ealick, S. E.J. Med. Chem.
1993,36, 55-69.

(7) Secrist, J.A.; Niwas, S.; Rose, J. D.; Babu, Y. S.; Bugg, C. E.; Erion,
M. D.; Guida, W. C.; Ealick, S. E.; Montgomery, J. A.J. Med. Chem.
1993,36, 1847-1854.

(8) Erion, M. D.; Niwas, S.; Rose, J. D.; Subramanian, A.; Allen, M.;
Secrist, J. A.; Babu, Y. S.; Bugg, C. E.; Guida, W. C.; Ealick, S. E.;
Montgomery, J. A.J. Med. Chem1993,36, 3771-3783.

(9) Guida, W. C.; Elliott, R. D.; Thomas, H. J.; Secrist, J. A.; Babu, Y.
S.; Bugg, C. E.; Erion, M. D.; Ealick, S. E.; Montgomery, J. A.J. Med.
Chem.1994,37, 1109-1114.
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Accordingly, each of the molecules in Table 2 was built
interactively with SMoG (directed mode), and the lowest energy
conformation was found with SMoG’s conformational search
facility. In this sense, the molecules were tested as if they had
been generated by SMoG’sde noVo growth algorithm. That is
to say that, given enough time, SMoG would have generated
these molecules and the corresponding conformations. How-
ever, undirected generation of these exact ligands is a highly
improbable event. The result is that we are testing a set of the
molecules generated by SMoG for correlation between free
energies (taken as the logarithm of the binding constants or IC50

measurements) and SMoG’s knowledge-based potential. This
approach was used in the SH3 domain and HIV cases as well.
The PNP binding site, however, contains a pocket for

phosphate as well as a nucleoside, and the binding constant (Ki

or IC50 depending on the affinity) of each of the ligands was
determined at two different concentrations of phosphate (1and
50 mM), and some molecules showed high sensitivity to the
phosphate concentration. Because the SMoG conformational
search and estimation of the binding free energy did not account
for the presence or absence of the phospate (indeed it is unclear
how to do that without introducing untestable hypotheses), one

can only expect that SMoG’s score would correlate with
experimental measurement for those ligands which were insen-
sitive to the phosphate concentration and at the lower concentra-
tion. As Figure 6 shows, this is indeed the case: the highly
sensitive molecules show no correlation with SMoG, whereas
the others show very strong correlation. The significance of
these two observations is taken up in the discussion.
SH3 Domain. In a separate system, the specificity pocket

of SH3 domains,10-12 a similar test was performed. The
coordinates of one ligand was provided to us by Sibo Feng and
Stuart Schreiber, which represented a superset of several of the
other experimental ligands. By trimming this structure down,
several ligands were prepared (see Table 3). The remaining
ligand, which was structurally independent, was generated as
described for the PNP ligands. Figure 7 shows the correlation
of experimental binding constant and SMoG’s estimation of the
free energy of binding.

(10) Chen, J. K.; Lane, W. S.; Brauer, A. W.; Tanaka, A.; Schreiber, S.
J. Am. Chem. Soc.1993,115,12591-12592.

(11) Feng, S.; Chen, J. K.; Yu, H.; Simon, J. A.; Schreiber, S. L.Science
1994,266,1241-1247.

(12) Combs, A. P.; Kapoor, T. M.; Feng, S.; Chen, J. K.; Daude-Snow,
L. F.; Schreiber, S.J. Am. Chem. Soc.1996,118,287-288.

Figure 3. The distribution of energy for the design of 1000 molecules of the same size as the native ligand (sizes shown in brackets) for the first
nine complexes in the surface database. Notice that the energy of the native ligands, shown in black, are always in the extreme tail of the distribution.
The differences in the ranges of the energy per atom reflect the differing character of the binding sites and the various sizes of the small molecules.
Notice, however, that regardless of these two factors, the positioning of the native ligand’s energy in the distribution is the same in each case. This
implies both that the native ligand has an extremely rare SMoG energy and that the algorithm is able to generate comparable ligands. Both of these
factors support the hypothesis that the course-grained potential reflects the binding free energy of the complexes.
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HIV-1 Protease. HIV-1 protease has been the target of very
much structure-based drug design effort, and as such there is a
wealth of literature on the subject. However, in choosing a
system of ligands for proofing the correlation between SMoG’s
course-grained potential and experimentally determined binding
free energies, several considerations need to be applied. First
the experimental determinations have to have been performed
under identical conditions among the members in the system.
Secondly the binding constants must span a wide range. Thirdly
binding mode coordinates must either be published or attainable
via conformational search. Fourth, the molecules must be
structurally diverse (SMoG is not an effective lead optimization
toolssee the Discussion section) and yet of roughly the same
molecular weight. The system we have studied13-14 is presented
in Table 4, and the results are plotted in Figure 8.

(13) Abdel-Meguid, S. S.; Metcalf, B. W.; Carr, T. J.; Demarsh, P.;
DesJarlais, R. L.; Fisher, S.; Green, D. W.; Ivanoff, L.; Lambert, L.; Murthy,
K. H. M.; Petteway, S. R., Jr.; Pitts, W. J.; Tomaszek, T. A., Jr.; Winborne,
E.; Zhao, B.; Dreyer, G. B.; Meek, T. D.Biochemistry1994,33, 11671-
11677.

(14) Thompson, S. K.; Murthy, K. H. M.; Zhaong, B.; Winborne, E.;
Green, D. W.; Fisher, S. M.; DesJarlais, R. L.; Tomaszek, T. A., Jr.; Meek,
T. D.; Gleason, J. G.; Abdel-Meguid, S. S.J. Med. Chem.1994,37,3100-
3107.

Figure 4. The distribution of energy for the design of 1000 molecules of the same size as the native ligand (sizes shown in brackets) for the last
eight complexes in the surface database. With one exception, the energy of the native ligands, shown in black, are always in the extreme tail of the
distribution. The differences in the ranges of the energy per atom reflect the differing character of the binding sites and the various sizes of the
small molecules. Notice, however, that regardless of these two factors, the positioning of the native ligand’s energy in the distribution is the same
in each case. These examples provide further support of the course-grained potential.

Figure 5. The correlation between the energies of designed ligands
as determined by the knowledge-based design potential and the
empirical CHARMM potential after complete minimization. Notice the
placement of the native ligand (circled) and the proximity of several
other molecules. Those below the arbitrarily drawn gray line are good
candidates for binding.

SMoG: de NoVo Design Based on Free Energy Estimates J. Am. Chem. Soc., Vol. 118, No. 47, 199611739



Table 5 summarizes the overall correlation findings quanti-
tatively.
Example of de Novo DesignsCD4. The CD4 protein is an

immunoglobin-family transmembrane coreceptor expressed in
the helper T-cells. It participates in contact between the T-cells
and antigen-presenting cells by binding to the nonpolymorphic
part of the class II major histocompatibility complex (MHC-II)
protein, which is followed by the activation of the bound Lck
kinase activating the T-cell.
The human immunodeficiency virus (HIV) disrupts the

immune response mechanism by binding to CD4, penetrating
into the T-cells, and killing them. Therefore in order to prevent
HIV binding and subsequent action, the effort to find an inhibitor
to the binding between gp120 of HIV and CD4 is ongoing.
Figure 9a shows the chemical structure of a candidate ligand

for the binding site in the vicinity of Phe 43 of CD4 (Figure
9b). De noVo growth with SMoG presented several molecular

scaffolds which each contained positive features that attributed
to their low binding free energy estimate, such as a cluster of
three hydrogen bonds from a sugar-like ring shown at the bottom

Table 2. The PNP Ligands Tested by SMoG’s Course-Grained
Potential and Conformational Search Facilitya

R
phosphate
sensitivity

Ki or IC50

(µM) (1 mM
phosphate)

SMoG
energy per
heavy atom

2-hydroxyphenyl low 0.27 -18.1
2-tetrahydrofuranyl low 0.07 -16.2
2-tetrahydrothienyl high 0.011 -16.6
2-thienylmethyl low 0.021 -16.6
3-methoxyphenyl low 0.082 -18.1
3-methycyclohexyl high 0.025 -18.0
3-thienylmethyl low 0.025 -15.8
3-trifluoromethylcyclohexyl high 0.025 -13.2
3-trifluoromethylphenyl low 0.036 -12.3
4-hydroxyphenyl low 0.26 -18.7
cycloheptyl high 0.03 -17.1
cyclohexyl (no methylene) high 1.3 -17.0
cyclohexyl high 0.047 -17.4
cyclopentyl high 0.029 -18.0
methylphenyl low 0.057 -19.4
phenyl low 0.051 -18.7
pyridin-3-yl low 0.025 -18.5

X
phosphate
sensitivity

Ki or IC50 (µM)
(1 mM phosphate)

SMoG energy
per heavy atom

-(CH2)2- low 0.035 -17.8
-(CH2)3- high 0.62 -18.8
-O(CH2)2- high 1.00 -18.9

GMP low 530 -14.1
GDP low 360 -13.9
GTP low 490 -14.7
dGMP low 300 -14.4
dGDP low 37 -14.9
dGTP high 32 -14.4
acyclovir low 100 -15.8
acyclovirMP low 6.6 -14.4
acyclovirDP high 0.009 -14.4
acyclovirTP high 0.31 -14.4
a Each molecule contains a guanine or 9-deazaguanine fragment,

which was held fixed at the coordinates in the 1ulb crystal structure of
guanine. The binding mode of the balance of the structure was
determined by conformational search on the potential surface provided
by SMoG’s course-grained potential. Those molecules marked as
having low phosphate sensitivity are those whose binding constant
changes by a factor of 15 or less upon increase of the concentration of
phosphate to 50 mM. The highly sensitive molecules are affected in
some instances by a factor of 140.

Figure 6. Measuring the correlation of SMoG’s course-grained
potential and experimental binding constants in a series of purine
nucleoside phosphorylase inhibitors. Binding constants are plotted on
the log scale since the logarithm of the binding constant is proportional
to the experimental binding free energy. a) All the molecules are from
Table 2, showing no apparent significant correlation. However, clas-
sification of the ligands into those whose binding is highly sensitive to
the phosphate concentration (b) and those that are relatively insensitive
(c) demonstrates that the noise in plot (a) is largely due to the highly
sensitive ligands. Indeed, (b) shows absolutely no correlation, whereas
(c) shows a significant correlation. One outlier in graph (c), in the lower
right, is a molecule with three fluorine atoms. Since fluorine appears
only seldom in the database of crystal structures, the interaction
parameters for fluorine are ill-defined.
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of Figure 9a and a partialπ-stacking with Phe 43. By manual
addition of a methylene group between the sugar’s 4′ ester
linkage and the pyridine fragment and subsequent minimization
of the structure with CHARMM, theπ-stack was improved,
and the resulting geometry suggested the formation of the seven-
membered fused ring bridge to increase the rigidity of the
molecule and lock in the relative orientation of the pyridine
ring and the hydrogen-bonding groups. Finally, the hydroxyl

group on the seven-membered ring was added to take advantage
of a potential hydrogren bond which also suggested itself. The
resulting molecule and the interactions it makes with the protein
are shown in Figure 9.
Though there was considerable manual intervention in

arriving at this specific ligand candidate, SMoG, in an unbiased
design, suggested the key molecular fragments and provided
molecules which displayed these fragments in the relevant
orientation, thereby solving the bulk of the combinatorial
problem in lead design.

Discussion

Before we discuss our new contributions to the field, it is
appropriate to review the state of the art. With the exception
of the MCSS based approaches, each of the following treats
the protein rigidly. In each case, the overwhelming number of
candidates is trimmed down significantly by application of
screening to a large but manageable database or by trimming
the search tree through molecular generation algorithms that
strive to incorporate specific features that were found in
initialization stages.
DOCK.15-17 This is predominately a geometric method

wherein the Connolly surface of the receptor18-20 is mapped
onto a negative image. This negative image is used as the search
target for similarity with molecules in a library. Scoring is either
done with qualitative assessment of potential hydrogen bonding
and charge pairing or with estimation of interaction energy with
an empirical potential. DOCK is particularly able to find the
correct binding mode of ligands known to bind. In this regard,
however, it is limited by the assumption of fixed geometry of
the ligand as well as the extent of the library of potential
candidates. As the method relies on libraries of complete
molecules, it is unable to suggest novel structures.
GRID.21 This seminal work forms the seed of many of the

algorithms and approaches that have come since. Using an

(15) Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T.
E. J. Mol. Biol. 1982,161,269-288.

(16) Desjarlais, R. L.; Sheridan, R. P.; Dixon, J. S.; Kuntz, I. D.;
Venkataraghavan, R.J. Med. Chem.1986,29, 2149-2153.

(17) Shoichet, B. K.; Kuntz, I. D.J. Mol. Biol. 1991,221,327-346.
(18) Lee, B.; Richards, F. M.J. Mol. Biol. 1971,55, 379-400.
(19) Connolly, M. L.J. Appl. Cryst.1983a,16, 548-558.
(20) Connolly, M. L.Science1983b,221,709-713.
(21) Goodford, P. J.J. Med. Chem.1985,28, 849-857.

Table 3. The Src SH3 Domain Specificity Pocket Ligands Tested
by SMoG’s Course-Grained Potential and Conformational Search
Facilitya

ligand Ki (µM) SMoG energy per heavy atom

I 3.4 -9.1
II 6.6 -9.0
III 6.2 -10.5
IV 80 -8.0
V 15 -9.5
VI 220 -3.7
VII 11 -5.5
VIII 1000 -3.5

aWe were graciously provided the NMR structure for molecule I
complexed with SH3 by Sibo Feng and Stuart Schreiber from which
we were able to generate binding modes for molecules IV, V, VI, and
VIII. The binding mode of molecules II and III were determined by
conformational search using molecule I as a template. The binding
mode of molecule VII was determined by conformational search on
the potential surface provided by SMoG’s course-grained potential,
using the carbonyl group from molecule I as a fixed fragment (this
group provides the link to the peptide biassing element, which was not
included in these structures.)

Figure 7. Measuring the correlation of SMoG’s course-grained
potential and experimental binding constants in a series of ligands for
the specificity pocket of Src SH3 domain. Binding constants are plotted
on the log scale since the logarithm of the binding constant is
proportional to the experimental binding free energy. As in the case of
the PNP ligands with low sensitivity to phosphate concentration, there
is considerable correlation.
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empirical hydrogen-bonding interaction potential and spherical
representations of functional groups, GRID generates affinity
contours for various molecular fragments which identifies
regions of high and low affinity. These contours can be used
to guide chemical intuition or as input to several analysis
programs. GRID is limited by its representation of the
fragments, which does not allow prediction of fragment orienta-
tion.

GROW.22 By joining peptide fragments from an extensive
conformational library, this method generates peptide ligands
in a sequential molecular growth algorithm. Scoring includes
empirical interaction energy and internal energy as well as
surface area terms to approximate solvent effects.
LUDI. 23,24 According to simple, qualitative rules, favorable

sites are located for various functional groups which are then
joined together with linker fragments. Beyond ensuring that
steric clashes are avoided, no scoring of the new candidates is
performed. LUDI also allows the use of precalculated interac-
tion sites as produced by GRID. This method is exceptionally
quick and, therefore, can be used interactively.
CLIX. 25 As an enhancement over early versions of DOCK,

CLIX provides a screening of a structural library with respect
to patterns of functional groups as determined by GRID.
Beyond assuring no steric clashes, this method scores the
candidates by summing the energetic contributions (as deter-
mined by GRID) of each functional group that matches the
search template.
MCSS-HOOK-DLD. 26-29 These novel approaches involve

a sophisticated, dynamic treatment of the protein binding site,

(22) Moon, J. B. and Howe, W. J.Proteins1991,11, 314-328.
(23) Böhm, H.-J.J. Comput-Aided Mol Design1992a,6, 61-78.
(24) Böhm, H.-J.J. Comput-Aided Mol. Design1992b,6, 593-606.
(25) Lawrence, M. C.; Davis, P. C.Proteins1992,12, 31-41.
(26) Miranker, A.; Karplus, M.Proteins1991,11, 29.
(27) Caflisch, A.; Miranker, A.; Karplus, M.J. Med. Chem.1993,36,

2142-2167.

Table 4. HIV-1 Protease Ligands Tested by SMoG’s
Course-Grained Potential and Conformational Search Facilitya

molecule X R (or R′) Ki (nM)
SMoG energy per

heavy atom

A Boc H 3500 -12.1
A Boc Me 370 -12.5
A Boc Et 92 -13.0
A Boc n-Pr 150 -13.8
A Boc i-Pr 83 -13.4
A Boc CMe2CHCH2 270 -13.6
B Boc Me(R) 13300 -12.3
B Boc Me(S) 13300 -12.4
B Boc i-Pr(R) 2700 -13.3
B Boc i-Pr(S) 2700 -13.0
C 1.4 -13.3
D CH 18 -14.1
D N 4.2 -13.8

a As in the PNP case, these molecules share common structural
motifs, so that by using the crystal structures (1hps and 1sbg) to define
the coordinates of these motifs and using conformational search on
the balance of each molecule, the binding mode of each ligand was
determined. Also, the structurally specific waters in the binding site
were included as part of the protein.

Figure 8. Measuring the correlation of SMoG’s course-grained
potential and experimental binding constants in a series of ligands for
the specificity pocket of Src SH3 domain. Binding constants are plotted
on the log scale since the logarithm of the binding constant is
proportional to the experimental binding free energy. As in the case of
the PNP ligands with low sensitivity to phosphate concentration, there
is considerable correlation.

Table 5. Summary of Correlation Dataa

system
correlation
coefficient

no. of
points

probability of
random occurence

PNPb 0.80 17 0.002
SH3 0.81 8 0.110
HIV 0.77 11 0.050

aHere are presented the correlation coefficients for each of the
preceding ligand systems. Note that in each case there is significant
correlation. The probability of random occurrence is the probability
that a random selection of the same number of points would have the
given correlation constant. In other words, the confidence that the
observed correlations are systematic (and not the result of sparse
sampling) are 99.8% 88.9%, and 95.0%. Taken together, these data
imply that the confidence in correlation between SMoG’s course-grained
potential and the experimental binding free energy is established.]b This
correlation applies to the low sensitivity data only.
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which locates favorable interaction sites for molecular fragments
by performing a multiple copy simultaneous search. In such a
search, the protein is subject to the average potential field of
the ligands using the CHARMM empirical force field. The
resulting interaction sites, unlike with GRID, contain orientation
information and can be linked together with bonding force
fields and linker sp3 and sp2 carbon atoms (DLD, dynamic
ligand design) or molecular fragments in a database (HOOK).
Although the MCSS-based approaches rely essentially on
binding energy calculations for scoring, they are the first step
toward taking all of the relevant degrees of freedom into
account in the ligand design process, since the ligands
and the protein are flexible. The unfortunate aspect of this
sophisticated approach is the large amount of computation

required, several days preparation time on a modern work-
station followed by approximately an hour of computation for
each ligand candidate.

SMoG. As has been shown, the knowledge-based potential
discriminates very clearly between those molecules which are
likely to bind well and those that are not. In the case of the
surface proteins, all the native ligands (save one) were found
to lie at the tail of the distribution of free energies of molecules
that SMoG was able to derive (which themselves were already
the result of a minimization in the form of a biased pruning of
the search tree). This was corroborated with the enthalpic com-
parison performed using a well-accepted empirical force field.

Also, as shown in the studies of the PNP, SH3 domain, and
HIV-1 protease ligands, the course-grained knowledge-based
potential correlates very strongly with the experimental binding
free energies insofar as it is reasonable to expect such a

(28) Eisen, M. B.; Wiley, D. C.; Karplus, M.; Hubbard, R.Proteins1994,
19, 199-221.

(29) Miranker, A.; Karplus, M.Proteins1995,23, 472-490.

Figure 9. A candidate ligand for the Phe 43 binding pocket of CD4. This molecule is able to form five hydrogen bonds (four intermolecular and
one intramolecular) as well as a significantπ-stack with the benzene ring of Phe 43. (a) Molecular structure of the candidate: note the rigid
structure. (b) Licorice diagram of the ligand in the binding site showing the residues with which a strong ligand should make interactions. (c) The
ligand shown as a space filling model. Notice theπ-stacking with Phe 43. (d) Another view, this time with the protein as a space-filling model.
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correlation. Indeed, the PNP ligands whose binding constants
are sensitive to the concentration of phosphate provide a control
experiment against which to measure the correlations in the other
cases. One observes, as one should, no apparent correlation
between the design energy and the experimental free energy in
a situation for which there is noa priori relationship between
the two. Also, it should be made clear that SMoG is not yet at
an appropriate level of accuracy for performing lead optimiza-
tion. This is evidenced in Figure 6c, which shows that though
SMoG is readily able to distiguish micromolar binders from
nanomolar binders, it is not able to discriminate among those
ligands that bind in the submicromolar range. This latter range
is precisely the province of lead optimization methods, including
combinatorial chemistry, structure-activity studies (SAR),
isosteric substitution, and medicinal chemistry. This distinction
also arose in studying the HIV-1 protease inhibitors: those
molecules which differed by subtle variation in one functional
group scored similarly with SMoG, though they had radically
different binding constants. Again, these small variations are
the province of lead optimization, rather than lead discovery.
We are currently pursuing enhancements to the interaction
potential through the addition of specific interaction terms for
hydrogen bond formation and salt bridges and expect to publish
those results as the third paper in this series. Perhaps at that
stage, we will be able to apply SMoG’s scoring function in lead
optimization studies and SAR analysis.
The two systems HIV and PNP can be combined to one

correlation plot to obtain a very high overall correlation with
slope of one (r ) 0.875,N ) 30,P ) 1.38× 10-8) leading to
an overall relation between SMoG’s free energy estimate∆GS

and the experimental free energy∆GE:

However, the SH3 case does not fit into this scheme, but
rather relates the two variables with a slope of 2.3 and an
intercept of+3. The fundamental difference between these two
classes of examples is that the SH3 case involves a series of
surface binding ligands, whereas the other two enzymes bind
their ligands in internal pockets. For ligands completely
surrounded by protein, the number of intermolecular contacts
(i.e., protein atoms within 5.0 Å of the ligand atoms) is larger
than the surface binding situation, the ratio of the numbers
depending largely on the geometry of the binding site. Because
SMoG’s score is dependent on the number of contacts, the slope
of the free energy prediction line will change from protein to
protein; however, the relative values of the scores will be
meaningful in all cases.
The somewhat surprising success of SMoG’s simple interac-

tion representation and non-empirical potential lies in the very
nature of a knowledge-based energy applied to a coarse-grained
model. In fact, by choosing the radius of interaction to be
somewhat larger than intuition, we have subsumed much detail
into our simple matrix of interaction free energies,gij. Because
of the relation between SMoG’s design energy and experimental
free energies of binding, SMoG may provide a much needed
tool that combines geometric fit with chemical intuition into a
simple, quick, quantitative, predictive scheme. As such, SMoG
may be useful in the development of novel lead compounds
for systematic study and improvement in the pharmaceutical
industry. This method is clearly able to discriminate between
potential ligands that have a high probability of binding and

those that do not and is also capable of generating the favorable
candidates quickly. Its potential applications range from
computational brainstorming through explicitde noVo design
efforts. As a brainstorming tool, the molecules that SMoG
produces can serve as a guided tour of a binding site, allowing
one to visualize the possibilities for binding modes, specific
interactions, and specific functional groups, through chemically
viable molecules and fragments. As a companion to combi-
natorial chemistry efforts, SMoG’s output may seed the inclusion
of novel compounds into libraries. Furthermore, the program
allows explicit inclusion of the tethering fragments and orienta-
tion of the novel molecule.
In the example of a CD4 lead candidate, SMoG was used

both to explore the binding site and to arrive at a specific
molecule which is rich in qualitative detail and scores very
strongly relative to other molecules SMoG generated. As in
the analysis of the known surface-binding ligands in Figures 3
and 4, we have strong reason to believe that this candidate will
successfully bind to the CD4 binding site. The second paper
in this series will discuss several examples of ligand candidates
designed with SMoG and as well as highlighting the flexibility
of ligand design with SMoG will provide a general methodology
for developing novel molecules with a high propensity to bind
to their targets.
In the role for which it has been designed, SMoG provides

several advantages over other popular design methods. These
include simple efficiency (each molecule taking just seconds
on a personal computer), generating and evaluating whole
molecules rather than separate fragments which later need to
be linked, and, most importantly, documented correlation
between the scoring method and free energies of binding.
SMoG’s limitations include those implied in the simple

methods with which chemical geometry is handled: interfrag-
ment bond lengths and angles are all assumed to be standard
and unvarying; the protein structure is considered fixed; and
steric repulsions are either on or off, depending on a simple
distance test. Other limitations are implementation dependent,
and the program has been designed to allow flexibility in the
choice of operating conditions. For example, smaller angle steps
can be chosen to perform calculations more carefully, lower
temperatures can be chosen, and the fragment library can be
expanded.
Of course, as is the case with any design method, the crucial

test of SMoG’s merit will include the synthesis and measurement
of the binding constant of a candidate ligand that was the direct
result of SMoG design. It is our goal to pursue this line of
development vigorously.
Finally, the fact that SMoG’s essential elements have been

confirmed indicates that knowledge-based potentials and inter-
mediate models of protein-ligand interactions are now a viable
option for the study of many aspects of the binding problem
which have until now been computationally foreboding.
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