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Abstract: In this paper, we present SMoGrfall Molecule Growth), a novel, straightforward method fde nao

lead design and the evidence for its effectiveness. It is based on a simple model for ligand-protein interactions and
a scoring that is directly related to the free energy through a knowledge-based potential. A large number of structures
are examined by an efficient metropolis Monte Carlo molecular growth algorithm that generates molecules through
the adjoining of functional groups directly in the binding region. Thus SMoG is a method that is able to rank a
large number of potential compounds according to binding free energglmetime. In this sense, SMoG represents

a step toward an ideal computational tool for ligand design.

Introduction Table 1. Fragments Used in the Small Molecule Growth

The General Problem. Structure-based drug design is Algo.mhm —
beginning to play an important role in the discovery of new amide cyé:lo_hﬁ_xene meﬂl‘aw pyramidine
therapeutic molecules. Particularly when a lead compound is 2MiN€ 1,2-dithian - n-buty pyridine

: . carbonyl ethane napthalene  pyrrole

alrea.dy.known, and the three dlmen§|onal structure of the carboxylic acid  ethene nitrile sulfate
protein-ligand complex has been determined, computer modeling chloride fluoride nitro sulfide
provides an opportunity for assessment of the feasibility of gglnolggtane Jﬁj&:‘sé pﬁgggﬁﬂe tetgiggi%ldrofuranyl
related compounds as ligands. When no Iegq compoqnd IS cYclopentane hydroxyl propane tetrahydrothienyl
known, however, computers can help the .med|C|naI chemist by cycloheptane  indole propene thiophene
sampling a large variation of structures quickly and thoroughly, cyclohexan# iodide purine trifluoromethyl

generating potential lead candidates automatically. i@lkal
computational tool for this de novo lead design will be able to
testmanystructures in ahortperiod of time and arrange them
into a ranked list based on atcurate prediction of binding

a|ndicates that multiple conformations are represented.

in real time. This is not necessary, however, as most researchers
are comfortable with computer programs that require a day’s

free energiessince the latter reflect actual binding prqpensities. computation. However, computations that extend beyond a day
Of course, the termeanyandshortneed to be clarified. become less desitable tools

The number of structures that need to be sampled can be  ag \ve will point out in the discussion section, the several
determined from an analysis of the combinatorics of molecular o mn tational tools that have been presented in the literature

arch_ltecture._ Letus co_nS|der, for the sake of argument that we g qate have made excellent use of algorithmic programming
are in pursuit of chemicals on the order of 300 atomic mass i, order to overcome. in part, the combinatorial problem

units or roughly 26-25 second period elements. If we consider jiscssed above. However it is with respect to ghediction

small organic molecules as simple combinations of functional of free energies of bindintpat today’s methods are most weak

grc(njups, candidate fmolecul_es ca:n fbe ;hought c?f as the CEhO'CGThe most widely accepted approach for computational estima-
anl_barrangir’r}ent? apf)roxmate ylive ClIJ_nctlotna group;i. VEN tion of free energy of binding involves sophisticated simulations
a library ol functional groups as rudimentary as the one using an empirical potential and stepwise estimation of the

]E)resentetd in tTtI'S p_aptﬁr (see ;I;alble_ 1) cogtaln? {abo?t 50changes in enthalpy and entropy at each stage in a thermody-
ragments, resuting in the overwheiming numboer of Sructures ,, ;. cycle. These calculations demand on the order of days

to be considered being 30r over 1§ candidates. Obviously, of computation for each ligand candidate. As a result, the

this figure grows very quickly as the diversity of possible ; ; . :
structgres ig increase)(lj %y en)llarging the Iibrarz of rf)wolecular present methods reI_y on alternative scoring techniques to provide
fragments. Moreover, the number of arrangements and con-2 short list of candidates for complete thermodynamic deter-
formationé of five fracjments can be estimated in the tens of mination or, involving even greater expense, cheml_cal synthesis
thousands. These arquments lead us to define the and experimental determination of binding properties. Each of
' arg o : ny these scoring methods in some way approximates the binding
as on the order of billion or trillion. It is clear that exhaustive - : .
free energy, whose explicit form is unknown, but which must

searches over all possible compounds are beyond the limit of . ; . -
. X . - ... contain the following termgy(being free energye being energy,
practical computation, so in order to enhance practicability, - .
ands being entropy):

searches must be tuned to specific traits or the library of
chemical fragments needs to be trimmed.
Programs that perform analysis instantaneously can be used

interactively and thereby present the chemist with novel insight _ Ae — TAs,
- complex formation omplex formation

AGpinging = A€inding ~ TASinding 1)
_I_
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ation event between ligand and recepitorvacuq and those application the database contains crystal structures of protein-
marked solvation/desolvation refer to the effects explicitly due ligand complexes as described below.

to solvation. Hence\einging refers to the interaction energy More formally, the postulate of equal priori probabilities
minus any intramolecular strain induced upon complex forma- states that any two states at the same energy have equal
tion, andAssinging refers to the change in conformational freedom  probability of occupation, hence

induced by formation of the complex. Energies of solvation

are those energetic factors arising from the transfer of hydro- —§
- ; o expg——=
philic and lipophilic groups from aqueous solvent to the more e kT
lipophilic region of the protein binding site, and entropy of pij - 7 @)

solvation refers to changes in the order of the solvent at the

interface between ligand and solvent and protein and solventwhere here we denote the subscriptndj to mean different
upon complex formation. In many of the quantitative ap- atoms on the protein and ligand, respectively, so tgat
proximations to the full expression for binding free energy that gnd p.(? refer to the energy and probability of an interaction
have been implemented in the past for the purpose of ligand petween protein atornand ligand atonj. The situation in the
design, the scoring is based solely on the interaction energyformation of protein ligand complexes, however, is that not all
between the ligand and protein in the complex as the single configurations of the same energy are equally likely, because
most important contributor to the free energy. In other schemes of two entropic effects that arise from the strong presence of a
based more on spatial complementarity than chemical comple-poundary in the space sampled by the ligand. These are solvent
mentarity, theansatzhat solvation contributions are proportional  ordering (at the protein-solvent interface, ligand-solvent interface
to exposed surface area motivate the scoring strategies. In bottand complex-solvent interface), and the restrictions on atomic
of these approximations, the scoring system is rather incomplete interactions are due to steric hindrance and the nearly fixed
unfortunately resulting in erroneous ranking of the candidate chemical structures of the ligand and proteire.( fixed
ligands. Hence, great progress in computational ligand designmolecular architecture and small amount of conformational
can be achieved with the introduction of an improved evaluation freedom). These entropic effects are not correlated to the
of binding free energy which is as efficient as the approxima- energetic events, and so we can express the total probability as

tions currently in use. A recent papehas presented a g product ofpt above and a sampling probabiliby, which we
significant step in this direction through the application of a can relate to a notion of entropy as
knowledge-based potential to an interaction model based on

shared surface area. By adjusting two free parameters in their S
model, predicted free energies can be fit to the experimental s exg— k
binding free energies of a set of known, related ligands to pij =Tz 3)

reasonable accuracy. By the careful choice of a contact-based
interaction model, our interaction potential reflects the trends
in binding free energy without free parameters, thus eliminating
the need for a series of known related ligands in the hunt for a

giving a relation between probability and a notion of free energy
that is dependent on the model chosen to describe the atomic

interactions:
lead compound.
Coarse-Graining and the Knowledge-Based Potentialln &~Ts o
order to overcome this limitation and therefore provide a more e s exyg — KT KT
directly predictive de novo design tool, we implement here a B = pij pij = 7 = 7 (4)

coarse-grained model with a corresponding knowledge-based
potential. Whereas the details of our implementation will be
described in the methods section, it is relevant to introduce the which can be inverted to give an expression doF from the
nature of our approximations at this stage in order to shed light frequency of observed interactions.

on how this novel method provides an approximate description

of the binding free energy, incorporating effects from all of the g5 = —kTlog(p;) — log(2) (5)
terms of eq 1. The model we employ is intermediate between
crude functional group or amino acid repesentations of chemical
structure and traditional molecular dynamics force fields. Our
model treats both ligand and protein in an all-atom representation

By an appropriate choice of a reference state, the partition
function can be eliminated

but assumes a simplified form of the_lr |nter§ctlon. 9= —kTlog(p) — log(2) (6)
According to arguments made by Finkelstein and co-wofkers
one can apply the principles of canonical statistical mechanics g;i=0/—9 (7)

to subsets of proteins in that tiny subsets of a folded protein
are in thermal equilibrium with each other. This implies that
the information present in crystal structures of proteins and — Py

L . g; = —kTlog|— (8)
crystal structures of protein-ligand complexes (insofar as the /
lifetime of the complexed form is significantly longer than the ) ] o ]
time scales of the thermal fluctuations of the system) can be which gives a method to relate the statistical information about
disassembled into constituent pieces, and the contribution of interatomic interactions in crystal structures of pro'geln-llgand
each piece can be assigned on the basis of probabilities. ThisComplexes to a two-body parameter that is a notion of free

is the heart of the knowledge-based apprdddti.e.: learning energy. By an appropriate choice of model for atomic interac-
the interaction energies by training on a database). In this tions and definition of reference state, it is possible to construct

the parameterg; so that their sum is an approximation of the

(1) Wallgvist, A.; Jernigan, R. L.; Covell, D. Qrotein Science 995, complete form of the free energy in eq 1.
4, 1881-1903. Without entering into the details here, it should be made clear
(2) Finkelstein, A. V.; Gutin, A. M.; Badretinov, A. YFEBS1993,325, . . . S .
23-28. that the choice of the interaction model is intrinsically a choice

(3) Miyazawa, S.; Jerniga, R. IMacromolecules1985,18, 534—552. of length scales. We must determine the reasonable distances
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over which atoms project their chemical properties in order to desolvation for formation of that particular contact. By choosing

accumulate the relevant statistics and apply the right model. the interaction radius between protein and ligand to be the

Hence, knowledge-based potentials lend themselves naturallycorrelation length of solvent ordering, the probabilities of the

to coarse-graining techniques, where potential energy surfacesspecific contacts observed will include the effect of an average

are smoothed by averaging all phenomena occurring below aover the contribution of solvation entropy to the free energy.

cutoff length scale into properties describing the system at the For this reason, a simple radius®A has been chosen for our

specified length. interaction model: a ligand atom is in contact with a protein
Coarse-Graining and the Search Algorithm. In principle, atom if they lie withn 5 A of each other.

the combinatorial search space for molecular growth or docking ~ The formation of each contact also involves energetic costs

algorithms is a rough energy landscape. Searching such afor desolvation. This effect can be taken into account by the

landscape requires careful algorithms and long search timesreference state. Choose

Fortunately, however, the identification of candidate lead 1

molecules is not a search fthe lowestfree energy complex = _

but rathera low free energy complex (or several). Still, the b= N ;pﬁ whereN = ;1 ©)

search is a difficult process because of the multiple minimum

problem. If the search space can be made more smooth bysuych that in the reference state, the specificity of each contact
coarse graining, however, the searching method need not be ass |ost, and the remaining energetic contribution in a model with
sophisticated. For this reason, SMoG employs a metropolis g 5 A interaction radius simply arises due to the fact that
Monte Carlo growth algorithm. Such a search procedure quickly desolvation has taken place. This choice of reference state has
samples the configuration space and the molecular space undethe simple interpretation that formation of those contacts that
the bias of the interaction potential (knowledge-based energy are observed in the database more frequently than average is
in this case). In a coarse-grained ligand design search space, gavored, whereas formation of those contacts that are observed
simple, hasty, search algorithm such as the one presented herggrely is penalized.
can do very well in finding low energy configurations. This choice of reference state also has effectively unrestricted
Measures of Success of Lead Design Method#t is difficult spatial sampling of the ligand with respect to the protein and
to define the success of a de novo design effort in the absencevice versa. In essence, it has no notion of chemical structure.
of an example of a ligand that was synthesized and tested solelyAnd, since the specificity of each contact is lost, the only
on the grounds of a computational tool. Only then do we have entropic contribution is precisely the entropy due to configu-
proof of concept Feasibility of concept, can be established by rational freedom. Hence, subtracti@gfrom g; accounts for
several means, however, and most methods in the literature tothe entropic effect of restricted sampling as well as the energetic
date have been able to present several qualitatively interestingeffect of desolvation.
suggestions for novel ligands or the improvement of known  This model is used to score candidate structures by an
ligands. Itis unclear, however, from their conclusions whether evaluation of the total binding free energy
these new candidates actually have lower binding free energies
(either experimental or theoretically calculated). Therefore, in G= ZgijA” (10)
this work, we have chosen to demonstrate the ability of SMoG ]
to predict the relative binding free energies of a series of known ) ) ) o ]
ligands. Itis this success that gives us confidence that SMoG's WhereA;; is zero unless andj are within 5 A of each other, in
combination of coarse-graining, knowledge-based potential andWhich case it is one. Thus, with this choice of model and
Monte Carlo growth algorithm provides an exciting new reference states is an approximation to the complete.clhange
contribution to the search for novel pharmaceutical leads. As in free energy upon complex formation. Coarse graining has
an example of the rich molecules that SMoG is able to produce, mcluded_entroplc effects of solvgmon, and the refergnce state
we do include a discussion of one design effort: a binding has provided the effects of solvation energy and configurational
pocket on the CD4 protein. Greater development of the general€Ntropy- .
SMoG design methodology will be left to the second paper in  One final aspect of the model is that the number of atom
this series, which is forthcoming. Furthermore, we are also yPes is expanded to include some notion of the chemical
presently pursuing genuingroof of concepin collaboration personality of the various atoms. In other words, carbon atoms

with medicinal chemists. are broken into the categories of fatty carbons and polar carbons,
and oxygen atoms are either charged, hydrogen bond donors,
Methods or hydrogen bond acceptors. Similarly nitrogen atoms and some

other atoms and ions are included, such as sulfur, phosphorus,

Model and Interaction Potential. The correct model and  fluorine, calcium, and zinc. The model, together with the
reference state for the application of a knowledge-based potentialknowledge-based potential, is referred to as the design energy
to the protein-ligand binding event can be deduced with respectin this work.
to the physical origins of the various terms in eq 1. Databases. Testing and application of SMoG has been

Changes in solvation entropy upon complex formation arise subdivided into two parts: binding to sites on a protein surface
due to the loss or gain of solvent order. This solvent order is and binding to sites in pockets. This subdivision is based on
manifest as a correlation in the potential surface of the solvent the observation that significantly different probabilities of
exposed atoms in the ligand, protein, or complex. These interaction arise in each case, largely due to the different role
correlations extend on the order of twice the size of a water of solvent in each situation which is reflected in the different
molecule beyond the boundary of the ligand, protein, or contributions from solvation/desolvation terms. For the protein
complex. As the interactions formed between ligand and protein surface work, 17 complex structures were chosen: 1cmc 1dhi
upon complexation have resulted in desolvation, there has beerlela 1glq 1gmp 1hew 1nco 1nsc 1nsd 1pip 1sha 1sre 1tim 2msb
a change in the configurational entropy. In other words, in order 2ohx 2sar 4dfr. These are all unique high resolutisr2(0 A
to form a particular intermolecular contact, each of the atoms RMSD) structures of non-peptide ligands bound to surface
in contact must have been desolvated. Therefore, where muchreceptors. For the non-surface work, the training database
order has been destroyed, there is an entropic increase due tincluded the following complexes (also 2.0 A RMSD): 1lart
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1bcd 1bcx 1bic 1bit 1byb 1cah 1cam 1lcan 1cao 1caz 1chn 1cil 5.0 T " y v
1cmp 1lcoy 1cra 1lcrq 1lcsc 1csh 1csi lenc lerb 1fel 1fem 1fen *

1fkd 1fkf 1fkh 1gca 1gcd 1hcb 1hsl 1hvi 1hvk 1hvl 1hyt licm * K
licn linc lisc llcc 1lic 1lid 1lie 1lif 1lra 1Ist Imdg 1mfa 1mng
lolb 1pal 1pbe 1pbp 1ppf 1ppp lray lraz 1snm 1sta 1sty 1swm
1syd 1thl 1tng 1tnh 1tni 1tnj 1tnk 1tnl 1tpp 1tro 2aae 2acq 2acr
2acs 2acu 2che 2csc 2ctc 2cut 2fke 2mbp 2pal 2rnt 2tbs 2xis
3cla 3cts 3dfr 3gch 3pat 3rnt 3sga 4csc 4gch 4pal 4sga 5cts
5sga 5tim 6rnt 7rnt 821p 8est 8tin 8xia 9est.

Monte Carlo Molecular Growth Algorithm. Directly in
the binding region of the protein, simple organic molecules are
generated by joining fragments with single bonds. Each step
of the molecular growth proceeds as follows: two hydrogen
atoms are selectetbne from the fragment to be added and one
from the structure as generated so far. The new fragment is
placed such that the hydrogen atoms are displaced, and the atoms *
formerly bonded to those hydrogen atoms now form a single
bond with a standard bond length. This procedure ensures that
the new bond angles and bond lengths are reasonable ap- 0 ) , ) )
proximations. Finally, the new functional group is oriented by 4.0 20 00 20 40 6.0
torsional rotation about the new bond. Table 1 lists the Logarithm of Algorithm Temperature
fragments used in molecular growth. Figur_e 1. _The average energy for ligands generated for l_sre at various
algorithmic temperatures (log plot chosen for clarity of display only).

In tlhls rlnanfner, I::jegl_nngg_wnh smgplez in the b('jn%mg S'te.)’ . As with all Monte Carlo algorithms, the algorithmic temperate defines
a molecule of any desired size can be generated, by continuingy,,; e algorithm reponds to steps which increase the parameter being

to add fragments. Notice that the growth is inherently branched minimized. Higher temperature implies higher probability of acceptance.
because at each growth step any hydrogen atom on the presentiere the affect of such a parameter on the final energies per heavy
structure is a potential site of growth. atom of the molecules generated by SMoG is shown. There is a sharp
Each fragment that is placed is oriented by torsional rotation affect in the narrow range of temperatures néas 1.
about the new bond in fixed increments (taken to be 60 degrees),
and all those orientations that are not sterically hinderieel:(
leading to atom pairs within 70% of the sum of their van der *
Waals’ radii) are subject to energetic evaluation. That rotamer
with the lowest energy is considered as a candidate for 80.0 -
acceptance into the new molecule. This acceptance is deter-
mined by a metropolis Monte Carlo criterion which compares
the new energy per atom with that before this growth step. Any
decrease is accepted, and any increase is accepted with
probability exd —Ag/T] whereg = G/N is the free energy per
atom, andT is an algorithmic temperature.

The preliminary selection of lowest allowed rotamer has two
positive effects. First, it biases the molecule more quickly to
low energy, since random selection of rotamers would lead to
significantly more metropolis failures. Second, it is an indirect
selection toward the tightest possible steric complementarity. 200 |

The Metropolis decision of acceptance or rejection of the new
fragment is in place to allow the energy per atom to increase X ox * ¥ % &
occasionally, as would need to be the case if the small molecule
had grown into a tight steric region and had no other recourse 00,5 20 00 20 20 5.0
but to grow into the solvent or some other unoccupied region, Logarithm of Algorithmic Termperature
where it would interact only marginally with the protein. Figure 2. The average computation time for ligands designed for 1sre

Analysis of Growth Algorithm. In any implementation of at various algorithmic temperatures (log plot chosen for clarity of
an algorithm such as presented here, care needs to be taken iflisplay only). At the same temperature for which the average energy
selecting the global parameters in the algorithm. These include©f the molecules rises, the algorithm becomes much more efficient.
the algorithm’s temperature, the nearest approach allowed]::h's result_s frc_)m the_ fact that a higher _acceptance rate of molecular
between atoms when assessing steric hindrance, and the anguld{29mens implies quicker butless selective growth. However, the trade
. . . off in efficiency needs to be viewed with a pragmatic attitude in this
increment in choosing the fragment rotamers. The neareStsituation, since the key parameter to optimize is the probability to
approach distance was taken to be 70% of the sum of the vangenerate extremely low energy molecules in a given time. Certainly,
del’ Waa|S I‘adll Of the atoms under COhSidera'[ion, Since th|5 gavehigher operating temperatures are prefen’ed since the affect on
good correlation with the nearest approach distances observedomputation time is more drastic than the affect on average energy
in the database. Sixty degree increments were chosen in parper heavy atom.
because finer increments gave rise to significantly more lengthy
computation times, and because finer resolution was not computation time for generation of a thousand ligands to
consistent with the coarse grained potential. Selection of the streptavidin, one of the surface proteins. Notice that there seem
optimal running temperature was made by observing the to be two regimes of operation of the algorithm, high bias and
distribution of energies and computation time at different low bias. Because the optimal algorithmic temperature is the
temperature. Figures 1 and 2 show the mean energy andone that generates the largest number of low energy structures

-6.0 -

Average Energy per Atom

70 | * .

100.0 £ 3 T T T

400

Computation Time per molecule (in seconds)
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per unit time, the low bias mode was selected for the balance Quasi-Correlation with Empirical Binding Energies. In
of the work in this paper, namely = 10.0. order to examine rough correlation between the design energy
The two modes can be understood from the point of view of approximation to free energy and an empirical estimation of
the solvation energy and configurational entropy. There are binding energy, the protein streptavidin (1sre) was chosen
some configurations whose free energy is favored because ofbecause its native ligand scored exceptionally strongly in design
the desolvation of lipophilic regions of the ligand and protein. energy and the native ligand and protein were both rather small,
However, the restrictions of the sampling of the space may make making subsequent calculations with CHARMM more efficient.
such configurations relatively improbable. Given a sufficiently Fifty of the lowest energy molecules generated with SMoG were
low algorithmic temperature, the persistent algorithm will attain minimized to convergence in the binding site of streptavidin.
these configurations at the expense of time. Figure 5 shows the correlation of the CHARMM interaction
Under the operating conditions of 60 degree torsional energy with the design potential. We are not seeking to
increments, 70% van der Waals contact radius, and an algo-demonstrate a one-to-one correspondence with CHARMM but
rithmic temperature of 10.0, each molecule of about 20 heavy rather to show that those molecules with low design energy also
atoms can be generated in a few seconds on a 100 MHZ pentiunhave low empirical energy. Also, there is a rough correlation
computer running Linux. between the two scoring methods, which is to be expected as
Synopsis of Program. SMoG can be operated in several the design energy, as an estimate of binding free energy contains
modes, which can be summarized as automatic, directed, or@ large contribution from binding energy. It should be noted
assisted. Automatic generation requires only the input of the here that the empirical energy is a vaccuum enthalpy estimate
protein structure and a coordinate used to specify the vicinity @nd, therefore, provides unreliable estimates of the solvent
of the binding site, from which it proceeds to generate ligands effects such as hydrophobic interaction. Thus the scatter in this
with at least one atom withi5 A of the specified coordinate. ~ figure results from the entropic and solvent energy factors in
Directed mode is an interactive program that allows the user to the free energy. This result also demonstrates that the SMoG
specify which molecular fragments are selected and where they@lgorithm and statistical potential are able to generate ligands
are attached. This mode allows the user to specify a specific that are predicted to have binding energies as strong as the native
molecule. Assisted growth begins with a user specified restart ligand.
fragment but proceeds from that fragment automatically. This Because the SMoG estimation of free energy is an estimate,
mode allows the user to incorporate a specific fragment into rather than an accurate determination, a recommended protocol
each molecule. The program also contains a conformationalfor the screening of lead candidates is to perform empirical
search facility, which performs a search in the space of estimations of the binding energy and select as candidates for
interfragment torsion angles for the conformation with the lowest further testing (be it experimental or computational) those that

interaction energy. score best in both binding energy and design free energy. These
are the candidates below the shaded line in Figure 5. Indeed,
Results examination of the structures of these molecules in complex

with streptavidin showed the presence of good steric comple-
mentarity, several hydrogen bonds, and association of lipophilic
moieties: the qualitative features desirable in ligand design.

Correlation with Experimental Binding Free Energies. In
) X order to test the correlation between experimental binding free
generated molecules. In so doing, the scoring method reflects . . )
S . L energies and the SMoG design procedure, SMoG was applied
the fact that native ligands have a large negative binding free T -
. to the three protein-ligand complex systems for which structural
energy. Second, the algorithm must be able to generate some

molecules with free energies comparable to native ligands in aand binding information has been published and is readily
9 'Mpe . 9 available. These examples include purine nucloside phospho-
reasonable amount of computation time. This demonstrates that : s -
. . rylase (PNP), Src SH3 domain specificity pocket (SH3 domain),
SMoG can generate complexes with free energies comparable

to a known ligand. Third, since the binding energy is a large and human immunodeficiency virus-1 protease (HIV). Each

case will be presented in turn.
component of the free energy, there must be some rough . leoside Phosphorvl ine based ligand
correlation between the design energy and an estimation of Purine Nucleosl ?P osphory as_e.Guanlne ased ligands
binding energy using an empirical force field such as CHARMM. that have been designed, synthesized, and assayed for purine

Fourth, there needs to be evidence that the guiding knowledge-nucleoside phosphorylase (PNPJ. In these publications, the
based potential can be relied upon to reproduce experimentala“thors present their rationale for synthesizing the ligands that

P . ; they tested, which rests on computer models of the ligands, each
binding f , der to establish the knowledge-based . T . .
Inding Iree energies, in order 10 es.ablisn the knowledge-base of which adopts a binding mode defined in part by the

potential. Finally, the molecules generated by SMoG must not di ; ine in th | b and |

only score well quantitatively but must be qualitatively appealing coordinates of guanine in the crystal structure Lulb and in part
as well. The evidence that SMoG meets each of these by_ a pomb_lnatlon of gqnformatlor_lal search and energy mini-
requirements is given in the following sections. mization with an empirical force field.

Attaining and Discriminating True Ligands. Figures 3 and (4) Tuttle, J. V.; Kemitzky, T. AJ. Biol. Chem1984,259,4065-4069.
4 demonstrate, for each of the complexes in the surface database (5) Ealick, S. E.; Babu, Y. S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.;
save one, that the knowledge-based potential respects the nativélontgomery, J. A.; Secrist, J. RNAS1991,88, 11540-11544.

. . . . 6) Montgomery, J. A.; Niwas, S.; Rose, J. D.; Secrist, J. A.; Babu, Y.
ligand (whose energy is marked as a dark stripe) as having S.;(B)ugg, C? E. Eyrion’ M. D.: Guida, W. C.. Ealick, S. E.Med. Chem.

extremely low energy. Moreover, molecules with a comparable 1993, 36, 55-69.
energy are rare but attainable in reasonable computation time (7) Secrist, J.A.;; Niwas, S.; Rose, J. D.; Babu, Y. S.; Bugg, C. E.; Erion,

; ; 0 . D.; Guida, W. C.; Ealick, S. E.; Montgomery, J. 8. Med. Chem.
since approximately 5% of generated molecules are comparable’i"g%’%’ 18471854,

to the native ligand in each example save one. (8) Erion, M. D.; Niwas, S.; Rose, J. D.; Subramanian, A.; Allen, M.;
The exception is an example where the native ligand contains Secrist, J. A.; Babu, Y. S.; Bugg, C. E.; Guida, W. C.; Ealick, S. E.;

; ; Montgomery, J. AJ. Med. Chen1993,36, 3771-3783.
only four atoms. Most likely, the algorithm would only take (9) Guida, W. C.: Elliott, R. D.; Thomas, H. J.. Secrist, J. A.: Babu, Y.

one step, with little opportunity for biasing, or little need to g Bugg, C. E.; Erion, M. D.; Ealick, S. E.. Montgomery, J. A.Med.
compromise energy for steric freedom. Chem.1994,37, 1109-1114.

For the SMoG method to be proven effective, several
requirements must be met. First the design potential must
recognize native ligands i(e.: ligands known to bind) as
extremely low in free energy compared to an ensemble of
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Figure 3. The distribution of energy for the design of 1000 molecules of the same size as the native ligand (sizes shown in brackets) for the first
nine complexes in the surface database. Notice that the energy of the native ligands, shown in black, are always in the extreme tail of the distribution.
The differences in the ranges of the energy per atom reflect the differing character of the binding sites and the various sizes of the small molecules.
Notice, however, that regardless of these two factors, the positioning of the native ligand’s energy in the distribution is the same in each case. This
implies both that the native ligand has an extremely rare SMoG energy and that the algorithm is able to generate comparable ligands. Both of these
factors support the hypothesis that the course-grained potential reflects the binding free energy of the complexes.

Accordingly, each of the molecules in Table 2 was built can only expect that SMoG’s score would correlate with
interactively with SMoG (directed mode), and the lowest energy experimental measurement for those ligands which were insen-
conformation was found with SMoG’s conformational search sitive to the phosphate concentration and at the lower concentra-
facility. In this sense, the molecules were tested as if they hadtion. As Figure 6 shows, this is indeed the case: the highly
been generated by SMoGde nao growth algorithm. That is sensitive molecules show no correlation with SMoG, whereas
to say that, given enough time, SMoG would have generatedthe others show very strong correlation. The significance of
these molecules and the corresponding conformations. How-these two observations is taken up in the discussion.
ever, undirected generation of these exact ligands is a highly SH3 Domain. In a separate system, the specificity pocket
improbable event. The result is that we are testing a set of theof SH3 domaind? 2 a similar test was performed. The
molecules generated by SMoG for correlation between free coordinates of one ligand was provided to us by Sibo Feng and
energies (taken as the logarithm of the binding constantsggr IC  Stuart Schreiber, which represented a superset of several of the
measurements) and SMoG'’s knowledge-based potential. Thisother experimental ligands. By trimming this structure down,
approach was used in the SH3 domain and HIV cases as well.several ligands were prepared (see Table 3). The remaining

The PNP binding site, however, contains a pocket for ligand, which was structurally independent, was generated as
phosphate as well as a nucleoside, and the binding constant ( described for the PNP ligands. Figure 7 shows the correlation
or ICsg depending on the aff|n|ty) of each of the |igand3 was of experimental blndlng constant and SMoG's estimation of the
determined at two different concentrations of phosphate (1andfree energy of binding.

50 mM), and some molecules showed high sensitivity to the  (10) Chen, J. K.; Lane, W. S.; Brauer, A. W.; Tanaka, A.; Schreiber, S.
phosphate concentration. Because the SMoG conformationald. Am. Chem. S0d.993,115,12591-12592. _ _
search and estimation of the binding free energy did not accountlg&l)zgg”fzﬁifzhg" J.K.;Yu, H.; Simon, J. A.; Schreiber, Sdience
for the presence or absence of the phospate (indeed it is unclear 12y combs, A. P.; Kapoor, T. M.; Feng, S.; Chen, J. K.; Daude-Snow,
how to do that without introducing untestable hypotheses), one L. F.; Schreiber, SJ. Am. Chem. S0d.996,118, 287—288.
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Figure 4. The distribution of energy for the design of 1000 molecules of the same size as the native ligand (sizes shown in brackets) for the last

eight complexes in the surface database. With one exception, the energy of the native ligands, shown in black, are always in the extreme tail of the
distribution. The differences in the ranges of the energy per atom reflect the differing character of the binding sites and the various sizes of the

small molecules. Notice, however, that regardless of these two factors, the positioning of the native ligand’s energy in the distribution is the same
in each case. These examples provide further support of the course-grained potential.

Energy per heavy atom

Correlation of CHARMM and Design Potentials

Molecules designed for 1sre binding site
0.0 v T

HIV-1 Protease. HIV-1 protease has been the target of very
much structure-based drug design effort, and as such there is a
wealth of literature on the subject. However, in choosing a
system of ligands for proofing the correlation between SMoG’s
course-grained potential and experimentally determined binding .
free energies, several considerations need to be applied. First a
the experimental determinations have to have been performed
under identical conditions among the members in the system.
Secondly the binding constants must span a wide range. Thirdly
binding mode coordinates must either be published or attainable
via conformational search. Fourth, the molecules must be
structurally diverse (SMoG is not an effective lead optimization
tool—see the Discussion section) and yet of roughly the same
molecular weight. The system we have stu#fiett is presented
in Table 4, and the results are plotted in Figure 8.

CHARMM Interaction Energy
8
o

-80.0 L * "
-300.0 -200.0

Design Energy

(13) Abdel-Meguid, S. S.; Metcalf, B. W.; Carr, T. J.; Demarsh, P.; 1000

DesJarlais, R. L.; Fisher, S.; Green, D. W.; lvanoff, L.; Lambert, L.; Murthy,

K. H. M.; Petteway, S. R., Jr.; Pitts, W. J.; Tomaszek, T. A., Jr.; Winborne, Figure 5. The correlation between the energies of designed ligands
?1;6272‘307 B.; Dreyer, G. B.; Meek, T. [Biochemistry1994,33, 1167} as determined by the knowledge-based design potential and the
(14)' Thompson, S. K.: Murthy, K. H. M.; Zhaong, B.. Winborne, E.: empirical CHARMM p_otenﬂal after_ complete minimization. Notice the

placement of the native ligand (circled) and the proximity of several

Green, D. W.; Fisher, S. M.; DesJarlais, R. L.; Tomaszek, T. A., Jr.; Meek, o)A )
T.D.; Gleason, J. G.; Abdel-Meguid, S.5.Med. Chem1994,37,3100- other molecules. Those below the arbitrarily drawn gray line are good
candidates for binding.

3107.
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Table 2. The PNP Ligands Tested by SMoG’s Course-Grained PNP
Potential and Conformational Search Facility a)
at 1mM PO,
o o 107 . . . . . . .
N N
HN | b I.i)l]i» 10° | twm’:\:w |
HNT HNT SN N ot sentiy * 5 %x
CHzR 10" * J
* a
X 10° * 1
HO),(0)P —
(HO)2(0) g .| \ . ]
KioriCs,  SMoG g - a
phosphate («M) (1 mM energy per 107 x 5 * * .
R sensitivity phosphate) heavy atom * a% Yo L * a
) | A g
2-hydroxyphenyl low 0.27 -18.1 10 °
2-tetrahydrofuranyl low 0.07 —16.2 10° | i
2-tetrahydrothienyl high 0.011 —16.6
2-thienylmethyl low 0.021 —16.6 107 . . . . . . .
3-methoxyphenyl low 0.082 —18.1 20 -19 -18 17 -16 -15 -14 -13 -12
3-methycyclohexyl high 0.025 —-18.0 b) Design Energy per Heavy Atom
3-thienylmethyl low 0.025 —15.8 high sensitivity at 1mM PO,
3-trifluoromethylcyclohexyl high 0.025 —13.2 107 T T : . . T T
3-trifluoromethylphenyl low 0.036 -12.3
4-hydroxyphenyl low 0.26 -18.7 °
cycloheptyl high 0.03 -17.1 10° .
cyclohexyl (no methylene) high 13 —-17.0
cyclohexyl high 0.047 —-17.4
cyclopentyl high 0.029 —18.0 10° | a 4 ]
methylphenyl low 0.057 —-19.4 g a
phenyl low 0.051 —18.7 2 4
pyridin-3-yl low 0.025 —18.5 Tt i
A
phosphate  K; or ICso (uM) SMoG energy 4 a 4
X sensitivity (1 mM phosphate) per heavy atom we | a . |
—(CHy)— low 0.035 —-17.8
—(CHy)s— high 0.62 —18.8
—O(CHy)— high 1.00 —18.9 10° L . . . A . .
-20 -19 -18 17 ~16 -15 -14 -13 -12
GMP low 530 —-14.1 Design Energy per Heavy Atom
e s O vemmaiwro
dGMP low 300 —14.4
dGDP low 37 —14.9 10° .
dGTP high 32 —14.4 ****
acyclovir low 100 —15.8 .
acyclovirMP low 6.6 —14.4 T * 1
acyclovirDP high 0.009 —14.4 *
acyclovirTP high 0.31 —-14.4 o 10° N ]
aEach molecule contains a guanine or 9-deazaguanine fragment, g
which was held fixed at the coordinates in the 1ulb crystal structure of 10° | |
guanine. The binding mode of the balance of the structure was
determined by conformational search on the potential surface provided * ok
by SMoG'’s course-grained potential. Those molecules marked as 107+ * * * 1
having low phosphate sensitivity are those whose binding constant ** * % R
changes by a factor of 15 or less upon increase of the concentration of w0 | *
phosphate to 50 mM. The highly sensitive molecules are affected in ]

some instances by a factor of 140. -20 -19 -18 17 -16 -15 -14 -13 -12
Design Energy per Heavy Atom
Table 5 summarizes the overall correlation findings quanti- Figure 6. Measuring the correlation of SMoG's course-grained
tatively. potential and experimental binding constants in a series of purine
Example of de Novo Design-CD4. The CD4 protein is an nucleoside phosphorylase inhibitors. Binding constants are plotted on
immunoglobin-family transmembrane coreceptor expressed in the log scale since the logarithm of the binding constant is proportional
the helper T-cells. It participates in contact between the T-cells to the experimental binding free energy. a) All the molecules are from
and antigen-presenting cells by binding to the nonpolymorphic Table 2, showing no apparent significant correlation. However, clas-

part of the class Il major histocompatibility complex (MHC-1) sification of the ligands into those whose binding is highly sensitive to
. .y - the phosphate concentration (b) and those that are relatively insensitive
Eirr?;ilen'a\::vtri]\llgziéz ffh”eov_l\_l_ecdel?y the activation of the bound Lck (c) demonstrates that the noise in plot (a) is largely due to the highly

= - . . sensitive ligands. Indeed, (b) shows absolutely no correlation, whereas
~ The human immunodeficiency virus (HIV) disrupts the () shows a significant correlation. One outlier in graph (c), in the lower
immune response mechanism by binding to CD4, penetrating right, is a molecule with three fluorine atoms. Since fluorine appears
into the T-cells, and killing them. Therefore in order to prevent only seldom in the database of crystal structures, the interaction
HIV binding and subsequent action, the effort to find an inhibitor parameters for fluorine are ill-defined.
to the binding between gp120 of HIV and CD4 is ongoing.

Figure 9a shows the chemical structure of a candidate ligand scaffolds which each contained positive features that attributed
for the binding site in the vicinity of Phe 43 of CD4 (Figure to their low binding free energy estimate, such as a cluster of
9b). De navo growth with SMoG presented several molecular three hydrogen bonds from a sugar-like ring shown at the bottom
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Table 3. The Src SH3 Domain Specificity Pocket Ligands Tested SH3 domain
by SMoG's Course-Grained Potential and Conformational Search —— . ‘ . . . . ‘
Facility?
o CH,NH, 107 * 4
)I\N/\QY
N N i *
\') \/\n/ m)k ot L |
0o, o] < *
g

o H
(o) (o) (o]
I 10°

. L 1 1 ' 1 I

OH -2 -11 -10 -8 -8 -7 -6 -5 -4 -3 -2
CH Design Energy Per Heavy Atom
o 3 . . . .
/U\ Figure 7. Measuring the correlation of SMoG's course-grained
N/\Q( o potential and experimental binding constants in a series of ligands for
N N the specificity pocket of Src SH3 domain. Binding constants are plotted
\H \/\n/ m)l\ on the log scale since the logarithm of the binding constant is

proportional to the experimental binding free energy. As in the case of
] the PNP ligands with low sensitivity to phosphate concentration, there
o is considerable correlation.

H o group on the seven-membered ring was added to take advantage
N N of a potential hydrogren bond which also suggested itself. The
Y \/\g/ m)‘\ resulting molecule and the interactions it makes with the protein

are shown in Figure 9.

v Though there was considerable manual intervention in
CHs arriving at this specific ligand candidate, SMoG, in an unbiased
’/©/ design, suggested the key molecular fragments and provided
0o o molecules which displayed these fragments in the relevant
YN\/\’er/U\ \I(Nm/ll\ orientation, thereby solving the bulk of the combinatorial
o 0 o) problem in lead design.
v Vi _ _
o Discussion
Before we discuss our new contributions to the field, it is
N\_<S | o (o} appropriate to review the state of the art. With the exception
{;S\: M ‘N Nm/u\ )J\ of the MCSS based approaches, each of the following treats
o) the protein rigidly. In each case, the overwhelming number of
il vin candidates is trimmed down significantly by application of
ligand K: (uM) SMoG energy per heavy atom screening to a large but manageable datab_ase or by trimming
the search tree through molecular generation algorithms that
:I g:g :g:é .st.ri_ve. to incorporate specific features that were found in
i 6.2 105 initialization stages.
v 80 -8.0 DOCK.15"17 This is predominately a geometric method
Y 15 -9.5 wherein the Connolly surface of the recepfof® is mapped
N 220 —3.7 onto a negative image. This negative image is used as the search
x::l 10%)%) :gg target for similarity with molecules in a library. Scoring is either

done with qualitative assessment of potential hydrogen bonding
2We were graciously provided the NMR structure for molecule | and charge pairing or with estimation of interaction energy with
complexed with SH3 by Sibo Feng and Stuart Schreiber from which g empirical potential. DOCK is particularly able to find the

we were able to generate binding modes for molecules IV, V, VI, and L - . .
VIII. The binding mode of molecules Il and Il were determined by correct binding mode of ligands known to bind. In this regard,

conformational search using molecule | as a template. The binding however, it is limited by the assumption of fixed geometry of
mode of molecule VIl was determined by conformational search on the ligand as well as the extent of the library of potential
the potential surface provided by SMoG'’s course-grained potential, candidates. As the method relies on libraries of complete
using the carbonyl group from molecule | as a fixed fragment (this molecules, it is unable to suggest novel structures
group provides the link to the peptide biassing element, which was not ' - . )

GRID.2! This seminal work forms the seed of many of the

included in these structures.) \ . ]
algorithms and approaches that have come since. Using an

of Figure 9a and a partiat-stacking with Phe 43. By manual
addition of a methylene group between the sugat'sster £ 515'\3I *ﬁurg_z,ll-l gé;zBiaeqe%é “; l\élé:SOatley, S.J,; Langridge, R.; Ferrin, T.
H HRH P : . J. Mol. blol. y , .

linkage and the pyr|d|ne fragment and subsequent. minimization (16) Desjarlais, R. L.. Sheridan, R. P.. Dixon, J. S Kuntz, I. D.:
of the structure with CHARMM, ther-stack was improved, Venkataraghavan, R. Med. Chem1986,29, 2149-2153.

and the resulting geometry suggested the formation of the seven- (17) Shoichet, B. K.; Kuntz, I. DJ. Mol. Biol. 1991,221, 327-346.
membered fused ring bridge to increase the rigidity of the 883 I(E%?l’ngllI'yR;\jhaLr(\j]S’A%pll\mérl\Sgtl.lgggla 1971,5% 373-400.
molecule and lock in the relative orientation of the pyridine (50 connolly, M. L. Science1983b,221,709-713.

ring and the hydrogen-bonding groups. Finally, the hydroxyl  (21) Goodford, P. JJ. Med. Chem1985, 28, 849-857.
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Table 4. HIV-1 Protease Ligands Tested by SMoG'’s

DeWitte and Shaidino

HIV-1 Protease

Course-Grained Potential and Conformational Search Facility 107 . i :
N R w07 * 1
’M *
X\N Y Y N o *
H on A 10° | ]
<
\© i * :
107 * * 4
A * *
*
10° t _
d *
<
AN NN OH 0° , . .
H &, & H -15 -14 -13 -12
OH Design Energy per Heavy Atom
Figure 8. Measuring the correlation of SMoG's course-grained

potential and experimental binding constants in a series of ligands for
the specificity pocket of Src SH3 domain. Binding constants are plotted
on the log scale since the logarithm of the binding constant is
proportional to the experimental binding free energy. As in the case of
the PNP ligands with low sensitivity to phosphate concentration, there
is considerable correlation.

: H Table 5. Summary of Correlation Data
OH < (o]
correlation no. of probability of
system coefficient points random occurence
c PNP 0.80 17 0.002
SH3 0.81 8 0.110
HIV 0.77 11 0.050

aHere are presented the correlation coefficients for each of the
preceding ligand systems. Note that in each case there is significant
correlation. The probability of random occurrence is the probability
that a random selection of the same number of points would have the
given correlation constant. In other words, the confidence that the
observed correlations are systematic (and not the result of sparse
sampling) are 99.8% 88.9%, and 95.0%. Taken together, these data
imply that the confidence in correlation between SMoG’s course-grained
potential and the experimental binding free energy is establish&bi

D correlation applies to the low sensitivity data only.
molecule X R (or R K; (M) SMﬁiﬁ;g{g%per GROW.?2 By joining peptide fragments from an extensive
conformational library, this method generates peptide ligands

ﬁ ggg ',;'Ae 3298 :ﬁé in a _sgque_ntial m(_)IecuIar growth a_lgorithm. Scoring includes
A Boc Et 92 ~130 empirical interaction energy .and internal energy as well as
A Boc n-Pr 150 ~13.8 surface area terms to approximate solvent effects.
A Boc i-Pr 83 —13.4 LUDI. 2324 According to simple, qualitative rules, favorable
A Boc CMeCHCH, 270 —13.6 sites are located for various functional groups which are then
B Boc  Me(R) 13300 —12.3 joined together with linker fragments. Beyond ensuring that
g goc .le(‘;) 1;’7388 :15"3‘ steric clashes are avoided, no scoring of the new candidates is
B Bgi :-P:ES; 2700 _130 performed. LUDI also allows the use of precalculated interac-
c 1.4 133 tion sites as produced by GRID. This method is exceptionally
D CH 18 —141 quick and, therefore, can be used interactively.
D N 4.2 —-13.8 CLIX. 2> As an enhancement over early versions of DOCK,

aAs in the PNP case, these molecules share common structuraICLIX provides a screening of a structural library with respect

motifs, so that by using the crystal structures (1hps and 1sbg) to define {0 patterns Of_ functional groups as d(_atermined by GRID.
the coordinates of these motifs and using conformational search onBeyond assuring no steric clashes, this method scores the

the balance of each molecule, the binding mode of each ligand was candidates by summing the energetic contributions (as deter-

determined. Also, the structurally specific waters in the binding site ined by GRID) of each functional group that matches the
were included as part of the protein.
search template.

empirical hydrogen-bonding interaction potential and spherical MCSS-HOOK-DLD.25-2% These novel approaches involve
representations of functional groups, GRID generates affinity & sophisticated, dynamic treatment of the protein binding site,
contours for various molecylar fragments which identifies (22) Moon, J. B. and Howe, W. Proteins1991, 11, 314328,

regions of high and low affinity. These contours can be used  (23) Bthm, H.-J.J. Comput-Aided Mol Desigh992a,6, 61—78.

to guide chemical intuition or as input to several analysis  (24) Bthm, H.-J.J. Comput-Aided Mol. Desigh992b, 6, 593-606.
programs. GRID is limited by its representation of the (gg) rawrence, M. ., Davis, B. @rot?ggigflz,gg,m—u.
fragments, which does not allow prediction of fragment orienta- (26) Miranker, A.; Karplus, MProteins Mod

! (27) Caflisch, A.; Miranker, A.; Karplus, MJ. Med. Chem1993, 36,
tion. 2142-2167.
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a)

Figure 9. A candidate ligand for the Phe 43 binding pocket of CD4. This molecule is able to form five hydrogen bonds (four intermolecular and
one intramolecular) as well as a significantstack with the benzene ring of Phe 43. (a) Molecular structure of the candidate: note the rigid
structure. (b) Licorice diagram of the ligand in the binding site showing the residues with which a strong ligand should make interactions. (c) The
ligand shown as a space filling model. Notice theatacking with Phe 43. (d) Another view, this time with the protein as a space-filling model.

which locates favorable interaction sites for molecular fragments required, several days preparation time on a modern work-
by performing a multiple copy simultaneous search. In such a station followed by approximately an hour of computation for

search, the protein is subject to the average potential field of each ligand candidate.

the ligands using the CHARMM empirical force field. The SMoG. As has been shown, the knowledge-based potential
_resultmg_lnteractlon sites, L_mllke with GRID, contain orientation  yiscriminates very clearly between those molecules which are
information and can be linked together with bonding force |y to bind well and those that are not. In the case of the
fields and linker sp and sg carbon atoms (DLD, dynamic surface proteins, all the native ligands (save one) were found

g?t?]r;% dﬁ S{ﬂg) (Jcrg()sl?ggir dfrzgmr%r;tcshlgsa ri?tazzzzrﬂ?z:ﬁogﬁ to lie at the tail of the distribution of free energies of molecules
9 PP y y that SMoG was able to derive (which themselves were already

inding ener Iculations for ring, th re the fir . -
binding energy calculations for scoring, they are the first step the result of a minimization in the form of a biased pruning of

toward taking all of the relevant degrees of freedom into h h Thi b d with th halbi
account in the ligand design process, since the Iigandst e search tree). This was corroborated with the enthalpic com-

and the protein are flexible. The unfortunate aspect of this Parison performed using a well-accepted empirical force field.
sophisticated approach is the large amount of computation Also, as shown in the studies of the PNP, SH3 domain, and
- - - HIV-1 protease ligands, the course-grained knowledge-based
(28) Eisen, M. B.; Wiley, D. C.; Karplus, M.; Hubbard, Rroteins1994, . . . L
19, 199-221. potential correlates very strongly with the experimental binding
(29) Miranker, A.; Karplus, MProteins1995, 23, 472—490. free energies insofar as it is reasonable to expect such a
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correlation. Indeed, the PNP ligands whose binding constantsthose that do not and is also capable of generating the favorable
are sensitive to the concentration of phosphate provide a controlcandidates quickly. Its potential applications range from
experiment against which to measure the correlations in the othercomputational brainstorming through explicié nao design
cases. One observes, as one should, no apparent correlatioefforts. As a brainstorming tool, the molecules that SMoG
between the design energy and the experimental free energy inproduces can serve as a guided tour of a binding site, allowing
a situation for which there is na priori relationship between  one to visualize the possibilities for binding modes, specific
the two. Also, it should be made clear that SMoG is not yet at interactions, and specific functional groups, through chemically
an appropriate level of accuracy for performing lead optimiza- viable molecules and fragments. As a companion to combi-
tion. This is evidenced in Figure 6c, which shows that though natorial chemistry efforts, SMoG’s output may seed the inclusion
SMoG is readily able to distiguish micromolar binders from of novel compounds into libraries. Furthermore, the program
nanomolar binders, it is not able to discriminate among those allows explicit inclusion of the tethering fragments and orienta-
ligands that bind in the submicromolar range. This latter range tion of the novel molecule.
is precisely the province of lead optimization methods, including  In the example of a CD4 lead candidate, SMoG was used
combinatorial chemistry, structur@ctivity studies (SAR), both to explore the binding site and to arrive at a specific
isosteric substitution, and medicinal chemistry. This distinction molecule which is rich in qualitative detail and scores very
also arose in studying the HIV-1 protease inhibitors: those strongly relative to other molecules SMoG generated. As in
molecules which differed by subtle variation in one functional the analysis of the known surface-binding ligands in Figures 3
group scored similarly with SMoG, though they had radically and 4, we have strong reason to believe that this candidate will
different binding constants. Again, these small variations are successfully bind to the CD4 binding site. The second paper
the province of lead optimization, rather than lead discovery. in this series will discuss several examples of ligand candidates
We are currently pursuing enhancements to the interaction designed with SMoG and as well as highlighting the flexibility
potential through the addition of specific interaction terms for of ligand design with SMoG will provide a general methodology
hydrogen bond formation and salt bridges and expect to publishfor developing novel molecules with a high propensity to bind
those results as the third paper in this series. Perhaps at thato their targets.
stage, we will be able to apply SMoG's scoring functioninlead  |n the role for which it has been designed, SMoG provides
optimization studies and SAR analysis. several advantages over other popular design methods. These
The two systems HIV and PNP can be combined to one include simple efficiency (each molecule taking just seconds
correlation plot to obtain a very high overall correlation with  on a personal computer), generating and evaluating whole
slope of oner(= 0.875,N = 30,P = 1.38 x 10°%) leadingto  molecules rather than separate fragments which later need to

an overall relation between SMoG's free energy estinte®e be linked, and, most importantly, documented correlation
and the experimental free energyse: between the scoring method and free energies of binding.
AGg = AGg— 10.2 (11) SMoG'’s limitations include those implied in the simple

methods with which chemical geometry is handled: interfrag-
. . ment bond lengths and angles are all assumed to be standard
However, the SH3 case does not fit into this scheme, but 5 ynvarying: the protein structure is considered fixed; and
rather relates the two variables with a slope of 2.3 and an gieric repulsions are either on or off, depending on a simple
intercept of+-3. The fundamental difference between these tWo gisiance test. Other limitations are implementation dependent,

classes of examples is that the SH3 case involves a series obq the program has been designed to allow flexibility in the
surface binding ligands, whereas the other two enzymes bind cgice of operating conditions. For example, smaller angle steps
their ligands in internal pockets. For ligands completely can pe chosen to perform calculations more carefully, lower
surrounded by protein, the number of intermolecular contacts temperatures can be chosen, and the fragment library can be
(i.e., protein atoms within 5.0 A of the ligand atoms) is larger expanded.

ghan tz_e Slljrfac'le b|n<tjr|]ng sﬂuat;on, ft?he L"’.‘t'g. of t_r;e ngmbers Of course, as is the case with any design method, the crucial
epending fargely on the geometry ot the binding Sité. Because, . ¢ spoG's merit will include the synthesis and measurement

SMoG's score is dependent on the number of contacts, the slopg, e binding constant of a candidate ligand that was the direct
of the free energy prediction line will change from protein to

tein- h th lati | f1h il b result of SMoG design. It is our goal to pursue this line of
protein; however, the relative values of the scores will be development vigorously.
meaningful in all cases.

The Somewat Surping Successof SVOG:sSipe era. A1, 0 (L 1t SioGs essent semens e beer
tion representation and non-empirical potential lies in the very 9 P

nature of a knowledge-based energy applied to a coarse-gr.slinecglnep”"’lte models of protein-ligand interactions are nowa viable
model. In fact, by choosing the radius of interaction to be option for the ;tudy of many aspects of the blndlng problem
somewhat larger than intuition, we have subsumed much detaiIWh'Ch have until now been computationally foreboding.

into our simple matrix of interaction free energigg, Because

of the relation between SMoG'’s design energy and experimental
free energies of binding, SMoG may provide a much needed
tool that combines geometric fit with chemical intuition into a
simple, quick, quantitative, predictive scheme. As such, SMoG
may be useful in the development of novel lead compounds
for systematic study and improvement in the pharmaceutical
industry. This method is clearly able to discriminate between
potential ligands that have a high probability of binding and JA960751U
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